
Project Fingerpaint

UTP-1.0

Unit Test Plan

Authors:
Tessa Belder (0739377)
Lasse Blaauwbroek (0749928)
Thom Castermans (0739808)
Roel van Happen (0751614)
Benjamin van der Hoeven (0758975)
Femke Jansen (0741948)
Hugo Snel (0657700)

Junior Management:
Simon Burg

Areti Paziourou
Luc de Smet

Senior Management:
Mark van den Brand, MF 7.096

Lou Somers, MF 7.145

Technical Advisor:
Ion Barosan, MF 7.082

Customer:
Patrick Anderson, GEM-Z 4.137

Eindhoven - June 23, 2013

Abstract

This document is the Unit Test Plan (UTP) of Group Fingerpaint. This project is part of the
Software Engineering Project (2IP35) and is one of the assignments at Eindhoven University of
Technology. The document complies with the UTP from the Software Engineering Standard,
as set by the European Space Agency [1]. The UTP provides the main guidance for the
Unit Tests (UT) during the Detailed Design (DD) phase for the Fingerpaint application.
It describes the environment needed to perform the UT. When this environment is set up,
all test cases must be executed according to their corresponding test procedures. After a test
has been performed a report will be written.

Contents

1 Introduction 5
1.1 Purpose . 5
1.2 Overview . 5
1.3 List of definitions and abbreviations . 5

1.3.1 Definitions . 5
1.3.2 Abbreviations . 6

1.4 List of references . 6

2 Test plan 7
2.1 Test items . 7
2.2 Features to be tested . 7
2.3 Test deliverables . 7
2.4 Testing tasks . 8
2.5 Environmental needs . 8
2.6 Test case pass/fail criteria . 8

3 Test case specifications 9
3.1 List of test cases . 9

3.1.1 Client . 9
3.1.2 Shared . 9
3.1.3 Server . 10

3.2 Suites . 10
3.2.1 ClientUnit.java . 10
3.2.2 SharedUnit.java . 10
3.2.3 ServerUnit.java . 11

4 Test procedures 12
4.1 General procedures . 12
4.2 Client side testing . 12
4.3 Server side testing . 13
4.4 Executing the tests . 13

5 Test reports 14
5.1 client . 14

5.1.1 gui . 14
5.1.2 model . 14
5.1.3 storage . 15

2

FINGERPAINT CONTENTS

5.2 shared . 16
5.2.1 model . 16
5.2.2 simulator . 16
5.2.3 utils . 17

5.3 server . 17
5.3.1 simulator . 17

3

Document Status Sheet

Document Status Overview

General

Document title: Unit Test Plan
Identification: UTP-1.0
Author: Roel van Happen, Benjamin van der Hoeven, Femke Jansen, Hugo Snel
Document status: Internally approved

Document History

Version Date Author Reason of change

0.0 19-Jun-2013 Roel van Happen, Benjamin van
der Hoeven, Femke Jansen,
Hugo Snel

Initial version.

Document Change Records Since Previous Issue

General

Date: 19-Jun-2013
Document title: Unit Test Plan
Identification: UTP-1.0

Changes

Page Paragraph Reason to change

- - Initial version.

4

Chapter 1

Introduction

This chapter lists general information about this document.

1.1 Purpose

This document describes the plan for testing the developed software units against the detailed
design, defined in the DDD [2]. The unit tests make sure that Fingerpaint complies with the
design in the Detailed Design (DD) phase of Fingerpaint as described in the ESA software
engineering standard [1].

1.2 Overview

Chapter 2 gives an overview of all items that will be tested, and the general criteria for the
UT. Chapter 3 lists all the Unit Tests, chapter 4 specifies the test procedures and chapter 5
reports the test results.

1.3 List of definitions and abbreviations

1.3.1 Definitions

Ant Tool to build Java applications.

API A specification of how some software components should interact with each other.

Eclipse A universal toolset for software development.

GWT A Java software development toolkit by Google for building and optimizing browser-
based applications.

HTML A language for creating web pages and other information that can be displayed in a
web browser.

Javadoc A documentation generator for generating API documentation in HTML format
from Java source code.

JUnit A unit testing framework for the Java programming language.

5

CHAPTER 1. INTRODUCTION FINGERPAINT

Local storage The storage from a web browser where data can be stored persistently.

Selenium Tool to automate browser input.

1.3.2 Abbreviations

2IP35 The Software Engineering Project
API Application Programming Interface
DD Detailed Design
DDD Detailed Design Document
GUI Graphical User Interface
GWT Google Web Toolkit
HTML HyperText Markup Language
JDK Java Development Kit
SEP Software Engineering Project
SVVP Software Validation and Verification Plan
URD User Requirements Document
UT Unit Test(s)
UTP Unit Test Plan

1.4 List of references

[1] ESA, ESA Software Engineering Standards. ESA, March 1995.

[2] Group Fingerpaint, “Detailed design document,” SEP, 2013.

[3] Group Fingerpaint, “Software validation and verification plan,” SEP, 2013.

[4] Group Fingerpaint, “User requirements document,” SEP, 2013.

6

Chapter 2

Test plan

2.1 Test items

The software to be tested is the Fingerpaint application. As this application is created
using the Google Web Toolkit, the unit tests are run with GWT JUnit tests. The source
code for the Fingerpaint application is written in Java, but compiled to JavaScript, which
means the tests should be run twice. Firstly, the Java bytecode is tested, using the GWT
JUnit tests in development mode. Secondly, the tests are run as compiled JavaScript. The
same GWT JUnit test can be run both in development mode and in production mode, albeit
not at the same time. Therefore, tests need only be written once.

2.2 Features to be tested

The Fingerpaint application should meet the design as described in the DDD [2]. Each
component should adhere to the interfaces given in the DDD [2].

2.3 Test deliverables

Before the testing can commence, the following items must be completed:

• SVVP [3].

• DDD [2].

• UTP (this document, excluding chapter 5).

• UT input data.

After completing the testing the following items must be completed:

• UT report (chapter 5 of this document).

• UT output data.

• Problem reports (if applicable).

7

CHAPTER 2. TEST PLAN FINGERPAINT

2.4 Testing tasks

Before any testing in the UT phase can take place, the following tasks need to be completed:

• Designing the unit tests.

• Tracing all test cases to components.

• Covering all components mentioned in the DDD [2] by test cases.

• Creating the UT input data.

• Ensuring that all environmental needs for the UT have been satisfied.

When these tasks have been completed, a UT can be performed according to the procedures
described in chapter 4.

2.5 Environmental needs

To be able to perform the UT, the following resources are needed:

• One or more web browsers supported by the Fingerpaint application (see the URD
[4] for a list).

• A client device with Ant, JUnit, a JDK and GWT installed.

See also the constraints described in the DDD [2].

2.6 Test case pass/fail criteria

An overall UT pass can only be achieved when all tests described in chapter 3 have been
performed and passed.

8

Chapter 3

Test case specifications

The specifications for the test cases can be found in the source code repository, more specif-
ically in the fingerpaint/test/src/nl/tue/fingerpaint/* folder, where * represents the
structure of the section names below. In the section below, a full list of test cases can be
found. For an explanation of a test case – i.e. what it does and what it checks – refer to the
Javadoc for that test in either the source code or the DDD [2].

3.1 List of test cases

The following tests are included.

3.1.1 Client

gui

UT1 NumberSpinnerTest.java

model

UT2 ApplicationStateTest.java

UT3 DrawingToolTest.java

UT4 RectangleGeometryTest.java

storage

UT5 FingerpaintJsonizerTest.java

UT6 FingerpaintZipperTest.java

UT7 ResultStorageTest.java

3.1.2 Shared

UT8 ServerDataResultTest.java

9

CHAPTER 3. TEST CASE SPECIFICATIONS FINGERPAINT

model

UT9 MixingProtocolTest.java

UT10 RectangleMixingStepTest.java

simulator

UT11 SimulationResultTest.java

UT12 SimulationTest.java

utils

UT13 ColourTest.java

3.1.3 Server

simulator

UT14 NativeCommunicatorTest.java

3.2 Suites

The suites allow for multiple test cases to be run at once. Every suite described below runs
all the tests listed in their respective sections.

3.2.1 ClientUnit.java

• ApplicationStateTest

• DrawingToolTest

• FingerpaintJsonizerTest

• FingerpaintZipperTest

• NumberSpinnerTest

• RectangleGeometryTest

• ResultStorageTest

3.2.2 SharedUnit.java

• ColourTest

• MixingProtocolTest

• RectangleMixingStepTest

• ServerDataResultTest

• SimulationResultTest

• SimulationTest

10

FINGERPAINT CHAPTER 3. TEST CASE SPECIFICATIONS

3.2.3 ServerUnit.java

• NativeCommunicatorTest

11

Chapter 4

Test procedures

This chapter describes the procedures that have to be followed when writing and executing
unit tests. Some general procedures that are applicable to server and client side testing are
discussed in section 4.1. The specific procedures that have to be adhered for client side testing
can be found in section 4.2, and the procedures that have to be adhered for client side testing
can be found in section 4.3.
A procedure on how to execute these tests is given in section 4.4.

4.1 General procedures

For both client and server side functionality, the author of the code of a certain component
should also write test cases accordingly for this component. It should never be the case that
code is committed before it has been tested. Moreover, whenever existing functionality is
re-factored, the person who changes the code must make sure that all the test cases still pass
after the re-factoring.
As a rule of thumb, each class from the src folder should have its own test class in the test

folder. The name of the test class should clearly indicate the test class under consideration
and should be suffixed with Test. The test classes should only test functionality of the class
under consideration. However, it might be necessary to include functionality of other classes
(such as instantiating other classes) when testing a particular class. If a new testcase has been
written, it should be added to one of the testsuites present in the code, in order to enable
automatic testing from the command line.

4.2 Client side testing

On the client side, functionality can be tested with either GWT JUnit tests or with Selenium
tests. The GWT JUnit tests can be used whenever a specific component has to be tested
without the use of a graphical user interface. For example, tests regarding saving to and
loading from the local storage can be tested internally: this can be tested by calling the
appropriate store and retrieve functionality from the storage-related classes. Testing via the
graphical user interface can be achieved through Selenium tests. These tests are written in
Java and can be executed on several browsers of choice. After running the tests, the results
for the selected browsers can be compared automatically, using a screen-shot comparator.
All the GWT JUnit tests can be executed from two test suites, which can be found at

12

FINGERPAINT CHAPTER 4. TEST PROCEDURES

ClientSuite.java and SharedSuite.java. In a similar fashion, all Selenium tests can be
executed via SeleniumSuite.java.
As mentioned before, some special settings are required to run the unit tests. This also applies
to the test suites, as these contain all the individual unit tests regarding specific functionality.
All the unit tests in the test suites will only pass, when they are executed in manual mode.

4.3 Server side testing

Server side testing can be done through JUnit tests, in a similar way as the GWT JUnit
tests in section 4.2. Again, a test suite is available to execute all the server tests at once:
ServerSuite.java.

4.4 Executing the tests

To execute the tests, it is assumed the environment of the system is setup correctly as de-
scribed in ATP appendix A. Assuming the application is present in <app-root>, navigate
the command-line to <app-root>/fingerpaint. To run the tests, one can now execute
the following command:

ant test

This command compiles the application. After it is finished, a URL is presented on the
command-line. Navigate the browser you would like to use to run the tests to this URL. The
GWTTestCases wil now be run in this browser. Selenium tests and standard Junin tests will
also be automatically run. After all tests are finished, a test report will be printed on the
command line.

13

Chapter 5

Test reports

This chapter shows the test reports after executing the unit tests.

5.1 client

5.1.1 gui

NumberSpinnerTest

UT1 Date: 19-june-2013

testDefaultAboveMax pass
testDefaultBelowMin pass
testInitialisation pass
testListener pass
testMinBiggerMax pass
testNotRound pass
testOverMax pass
testRound pass
testUnderMin pass

5.1.2 model

ApplicationStateTest

UT2 Date: 19-june-2013

testConstructor pass
testDistribution pass
testNrSteps pass
testProtocol pass
testSegregation pass
testSetGeometry pass
testSetMixer pass
testStepsize pass

14

FINGERPAINT CHAPTER 5. TEST REPORTS

DrawingToolTest

UT3 Date: 19-june-2013

testGetTool pass
testRadius pass

RectangleGeometryTest

UT4 Date: 19-june-2013

testInitCanvas pass
testIsInsideBottomWall pass
testIsInsideDrawingArea pass
testIsInsideTopWall pass
testIsOutsideDrawingArea pass
testMixingSteps pass

5.1.3 storage

FingerpaintJsoniserTest

UT5 Date: 19-june-2013

testJsonizeHashMap pass
testJsonizeIntArray pass
testJsonizeProtocol pass
testJsonizeResultStorage pass

FingerpaintZipperTest

UT6 Date: 19-june-2013

testZip pass

ResultStorageTest

UT7 Date: 19-june-2013

testGetDistribution pass
testGetGeometry pass
testGetMixer pass
testGetNrSteps pass
testGetProtocol pass
testGetSegregation pass

15

CHAPTER 5. TEST REPORTS FINGERPAINT

5.2 shared

ServerDataResultTest

UT8 Date: 19-june-2013

testConstructor pass
testSetters pass

5.2.1 model

MixingProtocolTest

UT9 Date: 19-june-2013

testAddStep pass
testAddStepException pass
testConstructor pass
testGetStepExecution pass
testMoveStepBack pass
testMoveStepException1 pass
testMoveStepException2 pass
testMoveStepForward pass
testRemoveStep pass
testRemoveStepException pass
testToString pass

RectangleMixingStepTest

UT10 Date: 19-june-2013

testGetStepSize pass
testRounding pass
testSetStepSize pass
testToString pass

5.2.2 simulator

SimulationResultTest

UT11 Date: 19-june-2013

testConstructor pass
testGetSegregation pass
testGetVectors pass

16

FINGERPAINT CHAPTER 5. TEST REPORTS

SimulationTest

UT12 Date: 19-june-2013

testConstructor pass
testGetConcentrationVector pass
testGetMixer pass
testGetProtocol pass
testGetRuns pass
testIntermediateVectors pass

5.2.3 utils

ColourTest

UT13 Date: 19-june-2013

testConstructor pass
testEquals pass
testHex pass
testPad pass
testSetters pass

5.3 server

5.3.1 simulator

NativeCommunicatorTest

UT14 Date: 19-june-2013

testSegregation pass

17

	Introduction
	Purpose
	Overview
	List of definitions and abbreviations
	Definitions
	Abbreviations

	List of references

	Test plan
	Test items
	Features to be tested
	Test deliverables
	Testing tasks
	Environmental needs
	Test case pass/fail criteria

	Test case specifications
	List of test cases
	Client
	Shared
	Server

	Suites
	ClientUnit.java
	SharedUnit.java
	ServerUnit.java

	Test procedures
	General procedures
	Client side testing
	Server side testing
	Executing the tests

	Test reports
	client
	gui
	model
	storage

	shared
	model
	simulator
	utils

	server
	simulator

