TU/e

Project FINGERPAINT
ADD-1.0

Architectural Design Document

Authors: Junior Management:
Tessa Belder (0739377) Simon Burg
Lasse Blaauwbroek (0749928) Areti Paziourou
Thom Castermans (0739808) Luc de Smet
Roel van Happen (0751614)

Benjamin van der Hoeven (0758975) Senior Management:
Femke Jansen (0741948) Mark van den Brand, MF 7.096
Hugo Snel (0657700) Lou Somers, MF 7.145

Technical Advisor:
Ton Barosan, MF 7.082

Customer:
Patrick Anderson, GEM-Z 4.137

Eindhoven - June 23, 2013

Abstract

This document contains descriptions of the architecture of the FINGERPAINT application. This
project is part of the Software Engineering Project (2IP35) and is one of the assignments at
Eindhoven University of Technology. The Architectural Design Document (ADD) is based
on the ESA standard for software development, as set by the European Space Agency (ESA)

[1].

Contents

1 Introduction

1.1 Purpose e e e
1.2 Scope e e
1.3 List of definitions and abbreviations

1.3.1 Definitions e e

1.3.2 Abbreviations
1.4 List of references
1.5 Overview e

System overview

System context

3.1 Fortranserver
3.2 Datacompressiono

System design

4.1 Design method
4.2 Decomposition description

4.2.1 List of components
4.2.2 Dependencies diagram

Component description

5.1.1 Fortran Module
5.1.2 Simulator Service
5.1.3 Application Persistence
51.4 HTTP Server
5.1.5 Application Service

5.1 Server
5.2 Client

5.2.1 Layout.,
5.2.2 Client Persistence
5.2.3 Application State

Feasibility and resource estimates

S O O Ot Ot Ot ot G

\]

oo Qo

10
10
10
10
11

13
13
13
14
16
17
18
19
19
21
22

24

FINGERPAINT CONTENTS

7 Requirements Traceability Matrix 26
7.1 SRD to ADD e 26
72 ADDtoSRD e 28

Document Status Sheet

Document Status Overview

General
Document title: Architectural Design Document
Identification: ADD-1.0
Author: Tessa Belder, Thom Castermans, Femke Jansen

Document status: Externally approved

Document History

Version Date Author Reason of change
0.0 11-Jun-2013 Tessa Belder, Thom Revised chapters 4, 5 and 7 with
Castermans, Femke Jansen respect to adding/removing mix-
ers.
0.1 13-Jun-2013 Tessa Belder, Thom Revised version following from
Castermans, Femke Jansen feedback of team managers.

Document Change Records Since Previous Issue

General

Date: 13-Jun-2013
Document title: Architectural Design Document
Identification: ADD-1.0

Changes

Page Paragraph Reason to change

- - Processed feedback on version 0.0 from team managers.

Chapter 1

Introduction

This chapter lists general information about this document.

1.1 Purpose

The Architectural Design Document (ADD) describes the basic design of the FINGERPAINT
application that is being developed by Group Fingerpaint. First of all, it describes how the
application is divided into different components. Then, for each component, it describes the
dependencies to other components, and finally the relation to external interfaces.

1.2 Scope

The FINGERPAINT application is an application designed and developed by Group Fingerpaint
for prof.dr.ir. P.D. Anderson, at the Eindhoven University of Technology. The application
serves as an educational tool for anyone who wants to gain a deeper understanding of the
process of mixing in general, and in particular for students at the TU/e.

1.3 List of definitions and abbreviations

1.3.1 Definitions

Broadband connection A broad range of technologies, all of which provide higher data
rate access to the Internet.

Client: Prof.dr.ir. P.D. Anderson.
Fortran: A general-purpose, imperative programming language.

Google Web Toolkit: An open source set of tools that allows for the creation and mainte-
nance of JavaScript applications in Java.

Mixing step: Part of a mixing protocol. A mixing step involves a step size and possibly a
movement of a wall with a given direction.

Subordinate: A child component.

CHAPTER 1. INTRODUCTION FINGERPAINT

Wall: A moveable part of the application that can be used to define the direction of the
mixing step to be executed. The wall is compatible with the selected geometry. For
instance, when a rectangular geometry is used, there are two rectangular walls (top and
bottom) that can be moved to the left or right.

1.3.2 Abbreviations

2IP35 | The Software Engineering Project
ADD | Architectural Design Document
ADSL | Asymmetric Digital Subscriber Line
GUI Graphical User Interface

GWT | Google Web Toolkit

JINI Java Native Interface

Mb Megabit

SEP Software Engineering Project

SRD Software Requirements Document
TU/e | Eindhoven University of Technology
URD | User Requirements Document

1.4 List of references

[1] ESA, ESA Software Engineering Standards. ESA, March 1995.
[2] Group Fingerpaint, “Software requirements document,” SEP, 2013.
[3] Group Fingerpaint, “User requirements document,” SEP, 2013.

[4] Stuart Knightley, “Homepage of the JSZip library.” http://stuk.github.io/jszip/.
[Online; accessed 13-June-2013].

1.5 Overview

The remaining chapters describe the architectural design of FINGERPAINT in more detail.
Chapter 2 gives a system overview. Chapter 3 describes the system context. The relationship
with external components is explained in detail in this chapter. Chapter 4 covers the sytem
design. The name and reference of the used design method are given. In chapter 5 all compo-
nents are described in detail. For each component, its type, purpose, function, subordinates,
dependencies to other components, interfaces, resources needed, internal processing and data
are described. Chapter 6 gives an overview of all resources needed to build, operate and
maintain the application. Chapter 7 contains a traceability matrix. This matrix shows how
each software requirement of the SRD [2] is linked to the components described in the ADD.

http://stuk.github.io/jszip/

Chapter 2

System overview

A description of the FINGERPAINT application can be found in the URD [3]. Furthermore,
the SRD [2] includes descriptions of the background of FINGERPAINT and the environment
it operates in. FINGERPAINT is a web-based information system. It does not interact with
any other information systems in its environment. Figure 2.1 shows the environment of
FINGERPAINT.

E(”%ﬁ"—’ -

Fingerpaint user Internet

using a web browser Fingerpaint server

Figure 2.1: The environment of FINGERPAINT

Chapter 3

System context

In this chapter, the context of the system is discussed. This means any external components
that are used by the FINGERPAINT application. The FINGERPAINT application uses one
external component: a Fortran server. This component is described is section 3.1. For
communication with this server data compression is used, which is described in section 3.2.

3.1 Fortran server

Any computations that need to be done by the FINGERPAINT application are offloaded to the
Fortran module as described in section 2.7.4 of the SRD [2]. Communication with this module
is done by calling its procedure in Fortran. This procedure simulates one mixing step and
uses several parameters. Some of these parameters describe the length of other parameters,
this is needed to ensure that the application only uses its own memory. These parameters
are: len geometry, len matrix, len_concentration_vector and len _step_name. The other
parameters are described in the table below:

geometry This is a string that identifies which geometry is used. The idea is
that this string is a descriptive string, that can also be used in the
GUI. For example, this string can be “Rectangle 400x240”. There
is a set that contains all the different geometries, to make sure that
these strings are consistent throughout the application.

matrix This is a string that identifies which matrix is used, from the ma-
trices available for the selected geometry. The string should, just
like the above string, be descriptive. There is a set that contains all
the different mixers, to make sure that these strings are consistent
throughout the application.

concentration_vector A vector that describes the concentration distribution on the can-
vas: simply an array of values between 0.0 and 1.0. This value will
be changed by the function.

step_size Size of the mixing step that is to be simulated.

FINGERPAINT CHAPTER 3. SYSTEM CONTEXT

step_name Describes the type of step that should be simulated (e.g. for a
rectangular geometry it contains which of the walls is moved and
in which direction).

segregration A value that defines how well a mixture is separated, a lower seg-
regation means the mixture is well-mixed. This is not an input
parameter, but a pointer to a value that will be set by this func-
tion: an output parameter.

3.2 Data compression

As described in the previous section, all parameters needed to perform the calculations need
to be uploaded from the client’s device to the Fortran server. This poses a possible problem,
however, as the len_concentration_vector parameter contains such a large amount of data
that uploading it with a speed of 1 to 2 Mb/s takes longer than the time requirements
mentioned in the URD [3]. Since this is the average upload speed for mobile and ADSL
broadband connections, and the FINGERPAINT application will mainly be used from mobile
devices, it is a priority that it also functions correctly and within a timely matter at these
speeds. Therefore, the data of the len_concentration_vector parameter is compressed
before uploading it to the Fortran server, which decreases the time needed to upload it.

For this purpose, the open source JavaScript Libray JSZip [4] is used on the client-side of
the application to compress the data. On the server-side Java functions are used to decompress
the data again before sending it to the Fortran module to perform the actual calculations.
Whenever the server sends data to the client, this data is automatically compressed, if the
client’s device supports this functionality.

Chapter 4

System design

This chapter describes the technical aspects of the design of FINGERPAINT.

4.1 Design method

FINGERPAINT is implemented as a web application using the Java software development frame-
work Google Web Toolkit (GWT). Section 4.2 defines the components of FINGERPAINT and
their dependencies.

4.2 Decomposition description

The decomposition of FINGERPAINT into components is based on the requirements of the
URD [3] and the SRD [2].

Section 4.2.1 lists the components, which are further described in chapter 5. Section 4.2.2
illustrates the dependencies between the components. The identified components are strongly
based on the tiers listed in section 2.7 of the SRD [2]. An overview of these tiers is given in
Figure 2.1 of the SRD [2].

4.2.1 List of components

The following components are identied:

e Server

— Application Persistence
— HTTP Server

— Fortran Module

— Application Service

— Simulator Service

10

FINGERPAINT CHAPTER 4. SYSTEM DESIGN

e Client

— Client Browser

* Layout
* Application State

— Client Persistence

4.2.2 Dependencies diagram

Figure 4.1 illustrates the dependencies between the components of FINGERPAINT. Arrows
indicate a ‘depends on’ relation between components. This relationship means that the com-
ponent on the start of the arrow needs the functionality of the component on the end of
the arrow to fulfill its task. A double arrow indicates a bidirectional relationship, so the
components on both sides of the arrow need eachother.

11

CHAPTER 4. SYSTEM DESIGN FINGERPAINT

Fortran Module

A
Simulator Service Application Persistence
HTTP Server Application Service

ﬁ

Application State <€ » Layout

Client Persistence

Figure 4.1: Components of FINGERPAINT and their dependencies

12

Chapter 5

Component description

In this chapter we describe all of the components that were identified in chapter 4 in detail.
For every component, we give an identifier and the type, purpose, function, subordinates,
dependencies and interfaces of the component. Furthermore, the internal control flow and
internal data flow are described.

5.1 Server

5.1.1 Fortran Module
Component Identifier

Server.FortranModule

Type

Program.

Purpose

Provides functionality for the following software requirements:
SRQ43, SRQ83, SRQ84, SRQ86, SRQ87, SRQ8Y, SRQYY

Function

The Fortran Module calculates how the mixing distribution changes as a mixing step is
applied.

Subordinates

The Fortran Module does not have any known child components. This is because the module
was given to Group Fingerpaint as a black box.

13

CHAPTER 5. COMPONENT DESCRIPTION FINGERPAINT

Dependencies

The Fortran Module does not have dependencies in relation to other components. This is
because it uses its own data, along with the parameters for computations and only interfaces
with its parent module (the Simulation Service).

Interfaces

The Fortran Module has a single interface with the Simulation Service. This interface is the
procedure call of the module in Fortran. This call receives a concentration distribution, a
geometry, mixer and a mixing step as arguments and returns a concentration distribution and
the segregation factor. For more detail regarding this interface, refer to chapter 3.

References

The description of the specific requirements, mentioned in the “Purpose”-section, can be
found in the SRD [2].

Processing

As the implementation of the Fortran Module is beyond the scope of project FINGERPAINT,
the internal flow is irrelevant.

Data

As the implementation of the Fortran Module is beyond the scope of project FINGERPAINT,
the internal data is irrelevant.

5.1.2 Simulator Service
Component Identifier

Server.SimulatorService

Type

Program.

Purpose

Provides functionality for the following software requirements:
SRQ43, SRQ81, SRQ82, SRQ83, SRQ84, SRQ85, SRQ86
Function

The purpose of the Simulator Service is to simulate a mixing run on the server and compute
how the concentration distribution changes when such the mixing protocol from this run is
applied.

14

FINGERPAINT CHAPTER 5. COMPONENT DESCRIPTION

Subordinates

The Simulator Service is composed of multiple Java classes, located in two packages. This is
because one part is located on the client side, while another part resides on the server (calling
the Fortran module, that runs on the server). The structure of these packages is shown below:

e nl.tue.fingerpaint.server.simulator

— NativeCommunicator.java

— SimulatorServicelmpl.java
e nl.tue.fingerpaint.client.simulator

— Simulation.java
— SimulationResult.java
— SimulatorService.java

— SimulatorServiceAsync.java

Dependencies

The Simulator Service depends on the Fortran Module for technical calculations.

Interfaces

The Simulator Service uses the Fortran Module’s interface to communicate with it. That
interface is described in subsection 5.1.1, more specifically the section “Interfaces”. This
communication is done via C code, which in turn calls the Fortran function.

The Simulator Service also receives information regarding mixing runs that have to be
executed from the Application Service, and it sends the resulting distribution back to the
Application Service. This communication is done by the Simulator Service Communication,
which uses JNI.

References

The description of the specific requirements, mentioned in the “Purpose”-section, can be
found in the SRD [2].

Processing

For processing requests, the Simulator Service keeps each request separate. For each request,
the protocol is split up in single steps, which are separately sent to the Fortran Module.

Data

The Simulator Service has no internal data other than the protocol and distribution defined
by the request. This data is modified as each step of the protocol is processed by the For-
tran Module and finally returned when all steps are analysed. Note that the concentration
distribution may be duplicated a number of times, when intermediate results are requested.

15

CHAPTER 5. COMPONENT DESCRIPTION FINGERPAINT

5.1.3 Application Persistence
Component Identifier

Server.ApplicationPersistence

Type
Database.

Purpose

Provides functionality for the following software requirements:
SRQ2, SRQ3, SRQ4, SRQ5, SRQ6, SRQ7, SRQS, SRQI9, SRQ10, SRQ11, SRQ12, SRQ13,
SRQ46

Function

This component is the database that contains the different mixers and their information.
Mixers can be retrieved from this component for use within the Fortran Module. All the
communication to execute these functions is done by the Application Persistence Communi-
cation, which is described in section 2.7.3 of the SRD [2].

Subordinates

The Application Persistence does not have any child components.

Dependencies

The Application Persistence component does not depend on any other components.

Interfaces

This component is accessed through the Application Service component. It receives requests
to return certain mixers from the Application Service and sends the requested data to the
Application Service. The Application Persistence Communication, which consists of Java
calls, is used for this purpose.

References

The description of the specific requirements, mentioned in the “Purpose”-section, can be
found in the SRD [2].

Processing

No processing of data is done in this component.

Data

This component is a database containing data that represents the different mixers.

16

FINGERPAINT CHAPTER 5. COMPONENT DESCRIPTION

5.1.4 HTTP Server
Component Identifier

Server. HTTPServer

Type

Program.

Purpose

Provides functionality for the following software requirements:
SRQ1, SRQ43, SRQ85

Function

The HTTP server is a piece of software that responds to requests by serving a file from a
static collection of content. This is used to serve the application on the client side.

Subordinates

The HTTP Server does not have any known child components. This is because this component
was not built by Group Fingerpaint.

Dependencies

The HTTP Server component does not depend on any other components.

Interfaces

This component is accessed through the Application State Component, which sends requests
for web pages to the HT'TP Server. The HTTP server responds to these request by serving
the requested file(s). All this communication is done through HTTP.

References
The description of the specific requirements, mentioned in the “Purpose”-section, can be

found in the SRD [2].

Processing

As the implementation of the HT'TP server component is beyond the scope of project FIN-
GERPAINT, the internal flow is irrelevant.

Data

The HTTP server component contains a static collection of content files, that can be served
to the client side of the application.

17

CHAPTER 5. COMPONENT DESCRIPTION FINGERPAINT

5.1.5 Application Service
Component Identifier

Server.ApplicationService

Type

Program.

Purpose

Provides functionality for the following software requirements:

SRQ2, SRQ3, SRQ4, SRQ5, SRQ6, SRQ7, SRQ10, SRQ11, SRQ12, SRQ13, SRQ14, SRQ15,
SRQ43, SRQ81, SRQ82, SRQS85

Function

Whenever centralized data or other communication is required by the application running on
a Client, this is done through the Application Service using the Application Service Commu-
nication channel.

Subordinates

This component is composed of three packages, which contain Java classes. The structure of
the packages is shown below:

e nl.tue.fingerpaint.client.serverdata

— ServerDataCache.java
— ServerDataService.java

— ServerDataServiceAsync.java
e nl.tue.fingerpaint.server

— ServerDataServiceImpl.java
e nl.tue.fingerpaint.shared

— ServerDataResult.java

Dependencies

The Application Service depends on the Application Persistence component when the Ap-
plication State component makes a request for data from the Application Persistence. Fur-
thermore, the Application Service depends on the Simulator Service component when the
Application State sends a mixing run to be executed on the Fortran Module.

18

FINGERPAINT CHAPTER 5. COMPONENT DESCRIPTION

Interfaces

The Application Service has an interface with the Application Persistence component. This
communication is done through a Java call. The Application Service sends requests to the
Application persistence to return a mixer. It receives data belonging to mixers from the
Application Persistence.

The Application Service also has an interface with the Simulator Service component. This
communication is done through JNI. The application service sends information belonging to
a mixing run to the Simulator Service. It receives the result of the calculated mixing run
from the Simulator Service.

References

For an in-depth description of the Application Service and the functionality described in the
“Purpose”-section, see the SRD [2].

Processing

Basically, the only thing the Application Service does is passing data through from the Ap-
plication State to the Simulation Service or Application Persistence, and vice versa. This
would imply that no processing is done. This is not entirely true however, as some data is
compressed before sending it to the client. Thus, the Application Service may format the
data before sending it to the client or the back end; see section 3.2 for more information.

Data

The Application Service does not have any internal data. The only data residing in this
component is the data passing through with requests.
5.2 Client

5.2.1 Layout
Component Identifier

Client.Layout

Type
GUL

Purpose

Provides functionality for the following software requirements:

19

CHAPTER 5. COMPONENT DESCRIPTION FINGERPAINT

SRQ16, SRQ17, SRQ18, SRQ19, SRQ20, SRQ21, SRQ22, SRQ23, SRQ25, SRQ24, SRQ26,
SRQ27, SRQ28, SRQ29, SRQ30, SRQ31, SRQ32, SRQ33, SRQ34, SRQ35, SRQ36, SRQ37,
SRQ38, SRQ39, SRQ40, SRQ41, SRQ42, SRQ43, SRQ44, SRQ45, SRQ47, SRQ4S, SRQ49,
SRQ50, SRQ51, SRQ52, SRQ53, SRQ54, SRQ55, SRQ57, SRQ5S, SRQ59, SRQ60, SRQ6L,
SRQ62, SRQ63, SRQ64, SRQ65, SRQ66, SRQ67, SRQ68, SRQ70, SRQ71, SRQ72, SRQT3,
SRQ74, SRQ75, SRQ76, SRQ77, SRQ7S, SRQ79, SRQ??, SRQ80, SRQ93, SRQY4, SRQI5,
SRQY6, SRQIY7, SRQIS, SRQ99, SRQ100, SRQ101, SRQ102

Function

This component is responsible for the GUI layout.

Subordinates

The layout is generated by GWT, which means that there are no files that actually contain
the layout. However, there are files that control the output and which are parsed/used by
GWT to generate the actual layout. These files are listed below:

e fingerpaint.nocache.js generated by GWT: will load the application

e fingerpaint.css used by GWT to generate inline CSS

e Fingerpaint.html base HTML, populated dynamically with JavaScript
Dependencies

The layout component depends on the Application State component. If the data inside this
component changes, the layout component has to be updated accordingly.

Interfaces

This component does not have any interfaces. It is part of the Client Browser, and any
interfacing with this component is done through the Application State component.
References

The description of the specific requirements, mentioned in the “Purpose”-section, can be
found in the SRD [2].

Processing

In this component data regarding information that was input by the user is sent to the
Application State component. The data is processed there. This component also receives
data from the Application State component regarding the contents of the GUIL. The Layout
component uses this data to update the GUIL.

Data

This component does not keep any internal data.

20

FINGERPAINT CHAPTER 5. COMPONENT DESCRIPTION

5.2.2 Client Persistence
Component Identifier

Client.ClientPersistence

Type

The Client Persistence is a set of files stored on the system of the client.

Purpose

Provides functionality for the following software requirements:

SRQ47, SRQ48, SRQ49, SRQ50, SRQ51, SRQ52, SRQ5H3, SRQ56, SRQ62, SRQ75, SRQ76
Function

The Client Persistence is responsible for storing results and user-defined protocols and distri-
butions.

Subordinates

The Client Persistence does not have any child components.

Dependencies

The Client Persistence component does not depend on any other components.

Interfaces

The Application State uses the Client Persistence interface for storing and retrieving files.
This communication is done through a Java-call. This component is accessed through the
Application State component. It receives requests to add, remove or return distributions or
protocols from the Application State. If it receives a request to return a file, it will send the
requested data to the Application State. The communication between these two components
consists of Java calls.

References

The description of the specific requirements, mentioned in the “Purpose”-section, can be
found in the SRD [2].

Processing

No processing of data is done in this component.

Data

The data stored in the Client Persistence is a collection of files representing mixing protocols
and concentration distributions.

21

CHAPTER 5. COMPONENT DESCRIPTION FINGERPAINT

5.2.3 Application State
Component Identifier

Client.ApplicationState

Type

Program

Purpose

Provides functionality for the following requirements:
SRQ47, SRQ48, SRQ49, SRQ50, SRQ51, SRQ52, SRQ5H3, SRQH4, SRQH5, SRQ56, SRQ62

Function

The Client Browser provides the user with a Graphical User Interface. All interactions of the
user with the application are performed through this GUI. Whenever a user action on the
GUI makes any change to the state of the application this change is stored in the Application
State. When any information stored in the Application State needs to be displayed on the
GUI it is accessed as well. For saving a file locally on the device the Application State is
needed to communicate and forward this to the Client Persistent component to store it there.
Finally, it also communicates mixing runs to the Application Service component to forward
it to the Fortran Module which does the computation.

Subordinates

In a similar manner as the layout component, as described in subsection 5.2.1, the components
regarding the application state are parsed by GW'T. For this purpose, several classes from
the following packages are used:

e nl.tue.fingerpaint.client.model
e nl.tue.fingerpaint.client.serverdata
e nl.tue.fingerpaint.client.simulator

e nl.tue.fingerpaint.client.storage

Dependencies

For saving a file locally on the device the Application State state depends on the Client
Persistence to make this happen. To make any changes to the state of the application it
depends on the Layout to issue the parameters for the new value. To retrieve the files with
web content that need to be displayed, it depends on the HTTP Server. Finally, when the user
wants to execute a mixing step/run, and the Layout communicates this to the Application
State, it depends on the Application Service component to forward it to the Fortran Module
which does the computation.

22

FINGERPAINT CHAPTER 5. COMPONENT DESCRIPTION

Interfaces

The Application State can send information that needs to be stored locally on the device to
the Client Persistence. It also sends information about a mixing run that has to be executed
to the Application Service, and receives information regarding the end results of a mixing run
from the Application Service. All this communication is done through Java calls. Finally, it
also receives files with web content from the HT'TP Server, which is done through HTTP.
References

For an in-depth description of the Application Service and the functionality described in the
“Purpose”-section, see the SRD [2].

Processing

The Application State converts a mixing run call to a JSON format to send to the Application
Service. When files need to be saved it converts the data to String format.

Data

The data stored in the Application State are the variables entered by the user in the Layout
component.

23

Chapter 6

Feasibility and resource estimates

This chapter gives an estimation of the computer resources which are needed to develop and
operate FINGERPAINT. Also, when all of the resource requirements in this chapter are met,
the software requirements SRQ9, SRQ15 from the SRD [2] are also met.

The requirements for the development of FINGERPAINT are:

CPU > 1.0 GHz x86 or equivalent

Memory > 4 GB RAM (or at least enough disk space to swap to)

Hard disk > 500 MB free on hard disk

Operating System Windows 7 or higher, or some up-to-date Linux distribution
Software Java 1.7 or higher, Google Web Toolkit SDK 2.5.1, iOS Safari

version 6.0 or higher, Firefox version 20 or higher, Google Chrome
version 26 or higher, Internet Explorer version 10 or higher and
Safari version 6.0 or higher.

The requirements for the server needed to develop the FINGERPAINT application are:

CPU > 1.0 GHz x86 or equivalent

Memory > 2 GB RAM

Hard disk > 200 MB free on hard disk

Operating System Windows 7 or higher, or some up-to-date Linux distribution
Software Java 1.7 or higher, Google Web Toolkit SDK 2.5.1.

The requirements for the operating the FINGERPAINT application on the server side are:

CPU > 1.0 GHz x86 or equivalent

Memory > 2 GB RAM

Hard disk > 200 MB free on hard disk

Operating System Windows 7 or higher, or some up-to-date Linux distribution
Software Java 1.7 or higher, Google Web Toolkit SDK 2.5.1.

24

FINGERPAINTCHAPTER 6. FEASIBILITY AND RESOURCE ESTIMATES

The requirements for operating the FINGERPAINT application on a client device are:

CPU > 1.0 GHz x86 or equivalent

Memory > 256 MB RAM

Operating System Any supporting the software

Software iOS Safari version 6.0 or higher, Firefox version 20 or higher,

Google Chrome version 26 or higher, Internet Explorer version 10
or higher or Safari version 6.0 or higher.

25

Chapter 7

Requirements Traceability Matrix

In this chapter, we link SRQs, described in the SRD [2], to the components described in this
document. We also do this the other way round, namely listing which SRQs are implemented
in a component.

7.1 SRD to ADD

The following matrix lists which components are linked to the SRQs in the SRD.

SRQ Component(s) ‘ SRQ Component(s)
1 Server.HTTPServer 2 Server.ApplicationService
3 Server.ApplicationService 4 Server.ApplicationService
5 Server.ApplicationService 6 Server.ApplicationService
7 Server.ApplicationService 8 Server.ApplicationPersistence,
Server.ApplicationService
9 Server.ApplicationPersistence, 10 Server.ApplicationPersistence
Server.ApplicationService
11 Server.ApplicationPersistence 12 Server.ApplicationPersistence
13 Server.ApplicationPersistence 14 Server.ApplicationService
15 Server.ApplicationService 16 Client.Layout
17 Client.Layout 18 Client.Layout
19 Client.Layout 20 Client.Layout
21 Client.Layout 22 Client.Layout
23 Client.Layout 24 Client.Layout
25 Client.Layout 26 Client.Layout
27 Client.Layout 28 Client.Layout
29 Client.Layout 30 Client.Layout
31 Client.Layout 32 Client.ApplicationState,
Client.Layout
33 Client.ApplicationState, 34 Client.ApplicationState,
Client.ClientPersistence, Client.Layout
Client.Layout

26

FINGERPAINTCHAPTER 7. REQUIREMENTS TRACEABILITY MATRIX

SRQ Component(s) ‘SRQ Component(s)

35 Client.ApplicationState, 36 Client.ApplicationState,
Client.ClientPersistence, Client.Layout
Client.Layout

37 Client.Layout 38 Client.Layout

39 Client.Layout 40 Client.Layout

41 Client.Layout 42 Client.Layout

43 Client.ApplicationState, 44 Client.ApplicationState,
Server.ApplicationService, Client.Layout
Server.FortranModule,

Server.SimulatorService

45 Client.ApplicationState, 46 Client.ClientPersistence
Client.Layout

47 Client.Layout 48 Client.Layout

49 Client.Layout 50 Client.ApplicationState,

Client.ClientPersistence,
Client.Layout

51 Client.ApplicationState, 52 Client.ApplicationState,
Client.ClientPersistence, Client.ClientPersistence,
Client.Layout Client.Layout

53 Client.ApplicationState, 54 Client.Layout
Client.ClientPersistence,

Client.Layout

55 Client.Layout 56 Client.ApplicationState,
Client.ClientPersistence,
Client.Layout

57 Client.Layout 58 Client.ApplicationState,
Client.Layout

59 Client.Layout 60 Client.ApplicationState,
Client.ClientPersistence,
Client.Layout

61 Client.Layout 62 Client.ApplicationState,
Client.ClientPersistence

63 Client.Layout 64 Client.ApplicationState,
Client.ClientPersistence,
Client.Layout

65 Client.Layout 66 Client.Layout

67 Client.Layout 68 Client.Layout

70 Client.Layout 71 Client.Layout

72 Client.ApplicationState 73 Client.ApplicationState,

Client.ClientPersistence,
Client.Layout
74 Client.Layout 75 Client.ApplicationState,

Client.ClientPersistence,
Client.Layout

27

CHAPTER 7. REQUIREMENTS TRACEABILITY MATRIXFINGERPAINT

SRQ Component(s) ‘SRQ Component(s)
76 Client.ApplicationState, 77 Client.ApplicationState,
Client.Layout Client.Layout
78 Client.Layout 79 Client.Layout
7?7 Client.Layout 80 Client.Layout
81 Server.ApplicationService, 82 Server.ApplicationService,
Server.SimulatorService Server.SimulatorService
83 Server.SimulatorService 84 Server.SimulatorService
85 Client.ApplicationState, 86 Server.FortranModule,
Server.ApplicationService, Server.SimulatorService
Server.SimulatorService
87 Server.FortranModule 88 Server.FortranModule
89 Server.FortranModule 90 Client.ApplicationState,
Client.Layout,
Server.ApplicationPersistence,
Server.ApplicationService,
Server.FortranModule,
Server.SimulatorService
91 Client.ApplicationState, 92 Client.ApplicationState,
Client.Layout, Client.Layout,
Server.ApplicationPersistence, Server.ApplicationPersistence,
Server.ApplicationService, Server.ApplicationService,
Server.FortranModule, Server.FortranModule,
Server.SimulatorService Server.SimulatorService
93 Client.ApplicationState, 94 Client.ApplicationState,
Client.ClientPersistence, Client.ClientPersistence,
Client.Layout Client.Layout
95 Client.ApplicationState, 96 Client.ApplicationState,
Client.ClientPersistence, Client.ClientPersistence,
Client.Layout Client.Layout
97 Client.ApplicationState, 98 Client.ApplicationState,
Client.ClientPersistence, Client.ClientPersistence,
Client.Layout Client.Layout
99 Client.ApplicationState, 100 Client.ApplicationState,
Client.ClientPersistence, Client.ClientPersistence,
Client.Layout Client.Layout
101 Client.ApplicationState, 102 Client.ApplicationState,
Client.ClientPersistence, Client.ClientPersistence,
Client.Layout Client.Layout

7.2 ADD to SRD

The following matrix lists which SRQs are implemented by each component.

28

FINGERPAINTCHAPTER 7. REQUIREMENTS TRACEABILITY MATRIX

Component SRQ(s)

Client.ApplicationState 32, 33, 34, 35, 36, 43, 44, 45, 50, 51, 52, 53, 56, 58, 60, 62,
64, 72, 73, 75, 76, 77, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98,
99, 100, 101, 102

Client.ClientPersistence 33, 35, 46, 50, 51, 52, 53, 56, 60, 62, 64, 73, 75, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102
Client.Layout 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 47, 48, 49,
50, 51, 52, 53, 54, b5, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66,
67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 7?7, 80, 90, 91, 92,
93, 94, 95, 96, 97, 98, 99, 100, 101, 102
Server.ApplicationPersistence 8, 9, 10, 11, 12, 13, 90, 91, 92

Server.ApplicationService 2,3,4,5,6,7, 8,9, 14, 15, 43, 81, 82, 85, 90, 91, 92
Server.FortranModule 43, 86, 87, 88, 89, 90, 91, 92

Server. HTTPServer 1

Server.SimulatorService 43, 81, 82, 83, 84, 85, 86, 90, 91, 92

29

	Introduction
	Purpose
	Scope
	List of definitions and abbreviations
	Definitions
	Abbreviations

	List of references
	Overview

	System overview
	System context
	Fortran server
	Data compression

	System design
	Design method
	Decomposition description
	List of components
	Dependencies diagram

	Component description
	Server
	Fortran Module
	Simulator Service
	Application Persistence
	HTTP Server
	Application Service

	Client
	Layout
	Client Persistence
	Application State

	Feasibility and resource estimates
	Requirements Traceability Matrix
	SRD to ADD
	ADD to SRD

