TU/e

Project Fingerpaint
URDO0.2

User Requirements Document

Authors:

Tessa Belder

Lasse Blaauwbroek
Thom Castermans

Roel van Happen
Benjamin van der Hoeven
Femke Jansen

Hugo Snel

April 26, 2013

Junior Management:
Simon Burg

Areti Paziourou

Luc de Smet

Senior Management:
Mark van den Brand

Lou Somers

Aduvisor:
Ton Barosan

Customer:
Patrick Anderson

Abstract

This document describes the User Requirements of Fingerpaint . This project is part of the
Software Engineering Project (2IP35) and is one of the assignments at Eindhoven University
of Technology. The User Requirements Document (URD) is based on the ESA standard for
software development, as set by the European Space Agency (ESA) [1]. This documents
lists what the Fingerpaint project should be capable of, how it should function and in what
environment it should function.

Contents

1 Introduction

1.1 Purpose
1.2 Scope
1.3 List of definitions
1.4 List of references
1.5 Overview

2 General description

2.1 Product perspective
2.2 General capabilities.

2.2.1 Mixing constraintso oo

2.2.2 Additional capabilities oL
2.3 General constraints Lo
2.4 User characteristics L
2.5 Environment description Lo L L o
2.6 Assumptions and dependencies L.

3 Specific requirements
3.1 Capability requirements .
3.2 Constraint requirements .

Appendices

A Use cases
A.1 View mixing history . . .

A.2 Remove mixing run from history oL

A.3 Save mixing run image . .

A.4 Save mixing run performance graph oL

A.5 Save mixing run animation

A.6 View multiple mixing performance results from previous runs
A.7 Define a mixing geometry and mixer
A.8 Load a predefined distribution.
A.9 Define an initial distributiono L

A.10 Define mixing protocol (1)
A.11 Define mixing protocol (2)
A.12 Define mixing protocol (3)

S Ou Ot ot gt

© © 00 0 00 J 3 3N

= =
w o o

14

15
15
15
16
16
17
17
18
18
18
19
19
20

Document Status Sheet

General
Document title: User Requirements Document
Identification: URDO0.2
Author: Tessa Belder, Roel van Happen, Benjamin van der Hoeven, Femke Jansen, Hugo Snel

Document status: Draft

Document history

Version | Date Author Reason of change
Tessa Belder

Roel van Happen
0.1 24-Apr-2013 | Benjamin van der Hoeven | Initial version.
Femke Jansen

Hugo Snel
Tessa Belder

Roel van Happen

0.2 26-Apr-2013 | Benjamin van der Hoeven | Revised version as prompted by the client
Femke Jansen meeting on 25-Apr
Hugo Snel

Document Change Records since

previous issue

General

Datum:

Document title:

Identification:

Changes

26-Apr-2013

URDO.2

User Requirements Document

For each of the document changes listed here, we will refer to the necessary versions or IDs
from the documents, to clarify which paragraphs from which versions have been changed.

Version | Page | Paragraph | Reason to change

0.1 6 2.1 Clarified that we do not compute any matrices.

0.1 6 2.2 Further divided this section into two sections: Mixing constraints
and Additional capabilities.

0.1 6 2.2 Added two new constraints and reworded the original two.

0.1 6 2.2 Clarified the possible geometries.

0.1 6 2.2 Clarified user input.

0.1 6 2.2 Added that the user should be able to decide to reset, or re-use
a received concentration distribution after each iteration of the
protocol.

0.1 8 3.1 Split requirement CPRO1 from URDO0.1 in CPR01, CPR02 and
CPRO03, as prompted by the client meeting on 25-04.

0.1 8 3.1 Split requirement CPRO2 from URDO0.1 in CPR04, CPR05 and
CPRO6, as prompted by the client meeting on 25-04.

0.1 8 3.1 Changed the priority from requirements CPR03 and CPR04 in
URDO.1 to won’t have, as prompted by the client meeting on 25-
04.

0.1 8 3.1 Renamed requirement CPR05 to CPR11, because of the change
in order of the previous requirements in URDO.2.

0.1 8 3.1 Split requirement CPRO6 from URDO0.1 in CPR12, CPR13 and
CPR14, as prompted by the client meeting on 25-04.

Version | Page | Paragraph | Reason to change

0.1 8 3.1 Added new requirements CPR09, CPR10, CPR15 in URDO0.2, as
prompted by the client meeting on 25-04.

0.1 9 3.1 Added new requirements CPR15, CPR16, CPR17, CPR18 and
CPR20 in URDO0.2, as prompted by the client meeting on 25-04.

0.1 9 3.1 Merged requirements CPRO07 and CPRO8 into requirement
CPR19, as prompted by the client meeting on 25-04 and per-
formed the rename because of change of the previous requirements
in URDO.2.

0.1 9 3.1 Renamed requirements CPR09 to CPR19 from URDO.1 to CPR21
to CPR31, because of the change in order of the previous require-
ments in URDO.2.

0.1 9 3.1 Changed the format in CPR22 from URDO0.2 to SVG instead of
PNG/GIF.

0.1 9 3.1 Changed the format in CPR25 from URDO0.2 to EVA instead of
APNG/AGIF.

0.1 10 3.2 Removed constraint requirements CNRO1 to CNR11, to lessen the
restrictions on the (amount of) interfaces that will be used in the
application.

0.1 10 3.2 Renamed requirements CNR12 to CNR17 from URDO0.1 to CNR4
to CNR9, because of the change in order of the previous require-
ments in URDO.2.

0.1 10 3.2 Changed the iOS version from CNR4 in URDO0.2 from 5 to 6, as
prompted by the client meeting on 25-04.

0.2 10 3.1 Explanation about capability requirements added.

0.2 13 3.1 Explanation about constraint requirements added.

0.2 Abstract Added that the project is a SEP project from the TUE, and de-
scribed document content

0.2 5 1.1 Changed 'the URD’ to 'this document’ in the first sentence

0.2 5 1.3 Added URD to the definitions

0.2 5 1.5 replaced ‘remainder chapters’ with ’remaining chapters’

0.2 6 1.5 moved the paragraph references to the end of each line.

Chapter 1

Introduction

1.1 Purpose

This document contains the requirements for Fingerpaint . These requirements are a ne-
gotiated agreement between prof.dr.ir. P.D. Anderson and Group Fingerpaint . All of the
listed requirements, and only these, will be implemented in Fingerpaint, according to their
priorities. Any changes to these requirements require the full consent of both parties.

1.2 Scope

Fingerpaint is an application which visualises fluid mixing on a mobile device. Users can
define the initial concentration, as well as manipulate the mixing protocol. The resulting
fluid distribution can be stored and analyzed by the user for comparison purposes.

1.3 List of definitions

2I1P35 | The Software Engineering Course
Client | prof.dr.ir. P.D. Anderson

CM Configuration Manager

CPR | Capability Requirement

CNR | Constraint Requirement

TU/e | Eindhoven University of Technology
SEP Software Engineering Project

SR Software Requirements

SRD Software Requirements Document
TBC | To Be Confirmed

TBD | To Be Defined

URD | This document, the User Requirements Document

1.4 List of references

[1] ESA, ESA Software Engineering Standards. March 1995.

[2] COLEY consulting, “Moscow prioritisation.” http://www.coleyconsulting.co.uk/
moscow.htm. [Online; accessed 24-April-2013].

1.5 Overview

The remaining chapters describe the user requirements in more detail. Chapter 2 gives a
general description of

e The relation to other systems (2.1)

e The main capabilities (2.2)

Constraint information and justification (2.3)

User characteristics (2.4)
e The operational environment (2.5)
e Assumptions and dependencies (2.6)

Chapter 3 gives a detailed list of the system’s capability requirements in section 3.1, and
a list of the constraint requirements is given in section 3.2.

http://www.coleyconsulting.co.uk/moscow.htm
http://www.coleyconsulting.co.uk/moscow.htm

Chapter 2

General description

This chapter describes general aspects of the application to be created as requested by the
client.

2.1 Product perspective

The aim of this project is to deliver an application that allows the user to easily visualize
the mixing of fluids. A user interface should be created which can be used to specify initial
parameters, after which output should be shown on the screen. All of this should be possible
using an easy to use, attractive interface on a mobile device.

A similar project was initiated around eleven years ago. The result of this project was
a MATLAB implementation that achieved a similar goal as our project. However, its user
interface is outdated by now, and it is impossible to comfortably use this solution on a mobile
device. Part of this original solution was a FORTRAN implementation for the flow of the fluids.
This implementation is still available, and we are to use it as a black box to which we can
send constraints and a vector, after which the server will compute the flow. The resulting
concentration distribution and its performance results are then sent back to the mobile device.

2.2 General capabilities

2.2.1 Mixing constraints

The system should be able to simulate the flow and mixing of a number of fluids, given some
constraints. There are a number of constraints to be specified. The first constraint is the
geometry of the mixer. There are four kinds of geometries in total: rectangle, square, circle,
and journal bearing. We will start by implementing support for rectangular geometries, and
will implement more geometries if time permits.

The second constraint concerns the characteristics of the mixer, which will be specified
by different matrices. These matrices are located on the server and are pre-computed. Each
geometry has its own set of possible characteristics and hence its own set of matrices. These
characteristics influence the flow of the fluids.

The third constraint concerns parameters applicable to the mixing protocol. Available
parameters are determined by the type of mixer defined in the second constraint. For example,
a rectangular mixing geometry has two walls that can be moved. The step parameter D
indicates the amount of time the wall should move. Possible values for D are 4, 2, 1, 0.5,
0.25 and 0.1. It is possible to both specify an entire protocol consisting of multiple wall
movements, and to only execute one step at a time.

The fourth parameter is the initial concentration of the fluids, which can be specified by
tapping on and dragging over the screen. If desired, it is also possible to load an existing
initial distribution.

2.2.2 Additional capabilities

The main user interface should be run on a mobile device, such as an iPhone. On this device,
the constraints mentioned above should be specified. When the initial parameters have been
set, the computation is offloaded to a server, which computes the flow of the fluids. When
the final result has been computed, this result is of course sent back to the mobile device,
where it can be saved.

A history of past simulations is stored on the device, to compare previous runs with the
current. The result of runs should also be exportable to easily sharable formats, such as .png
or .pdf, with support for an alpha channel (to realize transparency). For more interactive
results, entire runs should be exportable to animated .png or .gif files.

After each intermediate result is received by the mobile device, the user has the choice
of continuing with the received concentration distribution, or to start over with the original
initial concentration distribution.

2.3 General constraints

The user interface should be suitable for mobile devices, so it is easy to visualize the results
and show them to other people without much hassle. To make it even easier to quickly
demonstrate mixing results to others, the actual computation on the server should not take
too long (a couple of seconds at most). We do not want to be locked to one specific type
of device, so we have chosen to design a cross-platform solution. To easily share results, it
should also be possible to export the result of a mixing run to image files, and entire runs to
animated files.

2.4 User characteristics

As mentioned before, the user of the application should be able to specify initial parameters,
and, after the application has sent these off to the server, should be able to view the results.
The user can then store these results for later reference, and to export these results to image
files with transparency.

2.5 Environment description

The main device for the user interface is the mobile device. We are planning to create a cross-
platform solution, which means it will be possible to use the application on various kinds of
devices. Examples of supported devices are Apple iPhones, Android phones or tablets. The
initial concentration of the fluids, the mixing protocol and the shape of the mixer will be
specified on such a device.

As mobile devices typically do not have the power (both processing power and battery
capacity) to perform intensive computations, the hard work of computing the mixing will be
offloaded to a server. The starting parameters described above will be sent to the server, which
has an efficient FORTRAN implementation to solve the problem. While solving, intermediate
results are sent back to the mobile device for displaying.

2.6 Assumptions and dependencies

This section contains some assumptions for the application to function properly.

As a mentioned in the previous section, the application uses the FORTRAN implementation
on the server to perform all the calculations. Therefore, we assume this server always answers
requests within a few seconds.

Chapter 3

Specific requirements

This chapter explicitely states all requirements and constraints of the application to be de-
veloped. The final product will be delivered confirm these requirements. Any requirements
following from further request will be added here.

The requirements are prioritized using the MoSCoW model [2]. This model assigns one out
of four priorities to each requirement:

Must have; requirements with this priority are essential for the product, and must be im-
plemented.

Should have; requirements with this priority are not essential for the product to work. How-
ever, they are nearly as important as the must have’s and are therefore expected to be
implemented.

Could have; requirements with this priority are a nice addition to the product, and may be
implemented, if time and budget allow this.

Won’t have; requirements with this priority will not be implemented in this version of the
product, but may be nice to implement in future versions.

3.1 Capability requirements

This section lists all capability requirements for the product. These requirements explicitely
state what the system should do.

CPRO1 must have
The user can select a rectangular mixer geometry

CPRO2 should have
The user can select a square mixer geometry

CPRO3 could have
The user can select a circle or ‘Journal Bearing’ mixer geometry

CPRO4 must have

The user can define an initial concentration distribution with black and white by drawing on
the touchscreen with his/her finger.

10

CPRO5 should have
The user can select an initial concentration distribution from a list of previously saved distri-
butions.

CPRO6 could have
The user can select a predifined initial concentration distribution from a list.

CPRO7 won’t have
The user can define a initial concentration distribution with more than two different colours.
CPRO8 won’t have
The user can choose which colours are used for the initial concentration distribution.
CPRO09 must have
The user can reset the current concentration distribution.

CPR10 should have

The user can save an initial concentration distribution he/she has specified by drawing on
the touchscreen.

CPR11 must have
The user can define a mixing protocol for a rectangular geometry as a sequence of movements
of the upper and lower walls.

CPR12 should have
The user can define a mixing protocol for a square geometry as a sequence of movements of
the upper and lower walls.

CPR13 could have
The user can define a mixing protocol for a circle geometry as a sequence of rotation of circle.
CPR14 could have

The user can define a mixing protocol for a ‘Journal Bearing’ geometry as a sequence of
rotations of inner and outer circles.

CPR15 must have
The user can define a single movement and step (D) to be executed directly on the current
concentration distribution.

CPR16 should have
The user can select a mixing protocol for the specified geometry from a list of previously
saved mixing protocols.

CPR17 could have
The user can select a predifined mixing protocol for the specified geometry from a list.
CPR18 must have
The user can reset the current settings for the mixing protocol.

CPR19 must have

The user can define a step (D) for each movement from the mixing protocol, to indicate the
time that this movement is applied.

CPR20 must have
The user can define how many times the mixing protocol is applied (#steps).
CPR21 must have

Users can view an image of the endresult of applying the mixing protocol on the initial
concentration distribution.

CPR22 should have
The user can save the image from CPR21 locally to their device in a vector format (e.g. SVG
format).

11

CPR23 should have
Users can remove previously stored images from their device.

CPR24 could have
Users can view an animation of applying the mixing protocol on the initial concentration
distribution.

CPR25 could have
Users can save the animation from CPR24 locally to their device, using a animated vector
format (e.g. EVA format).

CPR26 could have
Users can remove previously stored animations from their device.

CPR27 should have
Users can view the mixing performance of the mixing protocol in a graph.

CPR28 should have
Users can save the mixing performance results locally on their device.

CPR29 should have
Users can retrieve the mixng performance results that are stored locally on their device.
CPR30 should have

Users can retrieve mixing performance results from multiple mixing protocols simultaneously,
after which they are depicted in one graph.

CPR31 should have
Users can remove mixing performance results that are stored on their device.

12

3.2 Constraint requirements

This section contains all constraint requirements for the application. These requirements state
all demands with regard to interfaces, portability, adaptability availability, security, safety,
standards, resources and time scales.

CNRoO1 must have
The application runs on iOS Safari versions 6.0 and higher.

CNRO2 should have
The application runs on Firefox versions 20 and higher, and Google Chrome versions 26 and
higher.

CNRO3 could have

The application runs on Internet Explorer version 10 and higher, Opera versions 12.1 and
higher and Safari versions 6.0 and higher.

CNRO4 must have
The application runs on devices runnning on iOS versions 6 and higher.

CNRO05 should have
The application runs on devices runnning on Android version 4.0 and higher.

CNRO06 could have
The application runs on devices runnning on Windows 8.

CNRoO7 must have
Waiting time between submitting input and receiving output is not longer than 5 seconds.
CNROS8 should have
Waiting time between submitting input and receiving output is not longer than 3 seconds.
CNRO09 could have
Waiting time between submitting input and receiving output is not longer than 1 second.
CNR10 must have

The application should be easily extendable with new mixers.

13

Appendices

14

Appendix A

Use cases

A.1 View mixing history

Goals: To view the result of a mixing run.

Preconditions: At least one mixing run must have been executed and saved.
Summary: The performance of the selected mixing run is shown, accompanied by a picture

of the final result.
Priority: Should have.
Steps:
Actor actions:
1. The user taps the View history button.

3. The user taps one of the runs shown in the
list.

FingerPaint response:

2. A list with previously saved runs is dis-
played.

4. The performance result of the selected run
and the final mixing result are shown.

A.2 Remove mixing run from history

Goals: To remove the result of a mixing run.

Preconditions: At least one mixing run must have been executed and saved.
Summary: The details of the selected run (image and performance result) are removed from

the history.
Priority: Should have.
Steps:
Actor actions:
1. The user taps the View history button.

3. The user taps one of the runs shown in the

list.
5. The user taps the Delete button.

15

FingerPaint response:

2. A list with previously saved runs is dis-
played.

4. The performance result of the selected run
and the final mixing result are shown.

6. The details of the selected run are deleted
from storage.

A.3 Save mixing run image

Goals: To save the resulting image of a mixing run.
Preconditions: The user has defined an initial concentration distribution and a mixing pro-
tocol, and has pressed the submit button.
Summary: The image of the executed mixing run is stored locally on the user’s device.
Priority: Should have.
Steps:
Actor actions: FingerPaint response:
1. The results of the mixing run are visualized
on the device.
2. The user selects the Save Image option. 3. The save interface is displayed.
4. The user selects a location on his/her device
to save the image.
5. The user chooses a name for the image.
6. The user taps the Save button. 7. A confirmation message is shown.
8. The user taps the OK button. 9. The ouput interface is displayed again.

A.4 Save mixing run performance graph

Goals: To save the performance graph of a mixing run.
Preconditions: The user has defined an initial concentration distribution and a mixing pro-
tocol, and has pressed the submit button.
Summary: The performance graph of the executed mixing run is stored locally on the user’s
device.
Priority: Should have.
Steps:
Actor actions: FingerPaint response:
1. The results of the mixing run are visualized
on the device.
2. The user selects the Save Performance op- 3. The save interface is displayed.
tion.
4. The user selects a location on his/her device
to save the performance graph.
5. The user chooses a name for the perfor-
mance graph.
6. The user taps the Save button. 7. A confirmation message is shown.
8. The user taps the OK button. 9. The ouput interface is displayed again.

16

A.5 Save mixing run animation

Goals: To save the resulting animation of a mixing run.
Preconditions: The user has defined an initial concentration distribution and a mixing pro-
tocol, and has pressed the submit button.
Summary: The animation of the executed mixing run is stored locally on the user’s device.
Priority: Could have.
Steps:
Actor actions: FingerPaint response:
1. The results of the mixing run are visualized
on the device.
2. The user selects the Save Animation option. 3. The save interface is displayed.
4. The user selects a location on his/her device
to save the animation.
5. The user chooses a name for the animation.
6. The user taps the Save button. 7. A confirmation message is shown.
8. The user taps the OK button. 9. The ouput interface is displayed again.

A.6 View multiple mixing performance results from previous
runs

Goals: To view the mixing performance of multiple runs in the same graph.
Preconditions: At least two mixing runs must have been executed and saved.
Summary: The performance of the selected runs are shown in the same graph.
Priority: Should have.

Steps:
Actor actions: FingerPaint response:
1. The user taps the View history button. 2. The history interface is displayed.

3. The user selects the View performance op- 4. A list of previously saved runs is displayed.

tion.

5. The user selects two or more runs from the

list.

6. The user taps the Submit button. 7. The mixing performances of the selected
runs are displayed in one graph.

17

A.7 Define a mixing geometry and mixer

Goals: To define a mixing geometry and mixer.

Preconditions: none.

Summary: The user selects the geometry used for the mixing process.
Priority: Could have.

Steps:

Actor actions: FingerPaint response:

1. The user taps the start mixing button.

3. The user selects mixing geometry of choice
from pop-up menu (rectangle, square, circle or
journal bearing).

5. The user selects mixer of choice from
select /pop-up menu.

2. Go to the the mixing interface.
4. Closes menu, opens new menu with possible
mixers associated with the mixing geometry

6. Display blank initial distribution menu, con-
form chosen mixing geometry and mixer

A.8 Load a predefined distribution

Goals: To load a predefined distribution.
Preconditions: none.

Summary: The user loads a predefined distribution.
Priority: Could have.

Steps:
Actor actions:
1. The user taps the Load Cy button.

FingerPaint response:
2. Display select/pop-up -menu with prede-
fined distributions for selected geometry.

3. The user on the predefined distribution of 4. Display canvas with selected distribution.

choice

A.9 Define an initial distribution

Goals: To define an initial distribution.

Preconditions: Mixing geometry + mixer have been chosen.
Summary: The user defines the initial concentration distribution

Priority: Must have.
Steps:
Actor actions:

1. The user taps the Color button (white or

black).

3. The user moves finger on screen to define

initial distribution.
5. Repeat 1 & 3 until satisfied

7. Optional: The user taps the save as prede-

fined distribution button

9. The user does or does not tick the Interme-

diate steps tickbox

18

FingerPaint response:
2. Gives visual feedback on selected colour.

4. Gives real-time visual feedback of selected
area in the selected colour.

6. Repeat 2 & 4 accordingly.

8. Saves the current distribution as a prede-
fined distribution for the selected geometry &
mixer.

10. Saves preference

A.10 Define mixing protocol (1)

Goals: To define the mixing protocol

Preconditions: Initial concentration distribution has been defined.
Summary: The user defines the mixing protocol

Priority: Must have.

Steps:
Actor actions:

1. The user taps on stepsize display (D)

3. The wuser taps the adjacent incre-
ment /decrement buttons (with 0.1 accuracy)
5. The user moves his/her finger (left(L) to
right(R) or right to left) adjacent to geometry
to indicate movement

FingerPaint response:

0. Disables Intermediate steps checkbox. It
cannot be edited anymore.

2. Gives visual feedback stepsize has been se-
lected

4. Increments/decrements value in the display
(with 0.1 accuracy).

6. * Case Rectangle/square : Interprets it as
L to R or R to L movement of top or bot-
tom wall based on proximity. Gives feedback

about which movement has been selected. *
Case Circle / Journal bearing: Interprets as
clockwise/anti-clickwise movement of (1st or
2nd) circle based on proximity. Gives feedback
about which movement has been selected.

7. Repeat 1-3-5 until satisfactory parameters 8. Repeat 2-4-6 accordingly. The most recent

have been selected parameter value is applied.

Remark: 1-2-3-4 and 5-6 can also be executed in vice-versa order.

A.11 Define mixing protocol (2)

Goals: To define the mixing protocol
Preconditions: Define mixing protocol(1) and Intermediate steps has been ticked.
Summary: The user defines the mixing protocol
Priority: Must have.
Steps:

Actor actions:

1. The user taps the Miz now! button

FingerPaint response:

2. Adds movement to protocol-log . Computes
result of applying given movement to the dis-
tribution and displays it on the canvas.

3. Repeat Define mixing protocol (0) + (1) 4. Give according responses
until satisfied

5. (optional): Click on Save protocol 6. Saves the protocol-log and (intermediate)

visualisation on local storage.

19

A.12 Define mixing protocol (3)

Goals: To define the mixing protocol

Preconditions: Define mixing protocol(1) and Intermediate steps has NOT been ticked.
Summary: The user defines the mixing protocol

Priority: Must have.

Steps:

Actor actions:

1. The user taps on the Add to protocol! but-
ton

3. Repeat Define mixing protocol (1) + (1)
until satisfied

5. The user taps on the emphShow mixture!
button

7. (optional): The user taps on the save pro-
tocol button

20

FingerPaint response:
2. Adds selected movement to protocol-log .

4. Give according responses

6. Computes result of applying all movement
in the protocol-log to the initial concentration
distribution and displays it on the canvas.

8. Saves the protocol-log and (intermediate)
visualisation on local storage.

	Introduction
	Purpose
	Scope
	List of definitions
	List of references
	Overview

	General description
	Product perspective
	General capabilities
	Mixing constraints
	Additional capabilities

	General constraints
	User characteristics
	Environment description
	Assumptions and dependencies

	Specific requirements
	Capability requirements
	Constraint requirements

	Appendices
	Use cases
	View mixing history
	Remove mixing run from history
	Save mixing run image
	Save mixing run performance graph
	Save mixing run animation
	View multiple mixing performance results from previous runs
	Define a mixing geometry and mixer
	Load a predefined distribution
	Define an initial distribution
	Define mixing protocol (1)
	Define mixing protocol (2)
	Define mixing protocol (3)

