
Project Fingerpaint

SRD-1.0

Software Requirements Document

Authors:
Tessa Belder (0739377)
Lasse Blaauwbroek (0749928)
Thom Castermans (0739808)
Roel van Happen (0751614)
Benjamin van der Hoeven (0758975)
Femke Jansen (0741948)
Hugo Snel (0657700)

Junior Management:
Simon Burg

Areti Paziourou
Luc de Smet

Senior Management:
Mark van den Brand, MF 7.096

Lou Somers, MF 7.145

Technical Advisor:
Ion Barosan, MF 7.082

Customer:
Patrick Anderson, GEM-Z 4.137

Eindhoven - June 23, 2013

Abstract

This document describes the Software Requirements of Fingerpaint. This project is part
of the Software Engineering Project (2IP35) and is one of the assignments at Eindhoven
University of Technology. The Software Requirements Document (SRD) is based on the ESA
standard for software development, as set by the European Space Agency (ESA) [1]. This
document presents a specification of solutions for the requirements described in the URD [2].

Contents

1 Introduction 5

1.1 Purpose . 5

1.2 Scope . 5

1.3 List of definitions and abbreviations . 5

1.3.1 Definitions . 5

1.3.2 Abbreviations . 6

1.4 List of references . 6

1.5 Overview . 6

2 General Description 8

2.1 Relation to current projects . 8

2.2 Relation to predecessor and successor projects 8

2.3 Function and purpose . 8

2.4 Environment . 9

2.5 Relation to other systems . 9

2.6 General constraints . 9

2.7 Model description . 10

2.7.1 Client tier . 10

2.7.2 Application Server tier . 10

2.7.3 Application Persistence tier . 11

2.7.4 Simulator Server . 11

3 Specific requirements 13

3.1 Functional requirements . 13

3.1.1 HTTP Server . 13

3.1.2 Application Service . 14

3.1.3 Application Persistence Communication 14

3.1.4 Application Persistence . 14

3.1.5 Application Service Communication 15

3.1.6 Client Browser . 15

3.1.7 ClientPersistence . 18

3.1.8 Simulator Service Communication . 23

3.1.9 Simulator Service . 23

3.1.10 Fortran Module . 23

3.2 Non-functional requirements . 24

3.2.1 Performance . 24

2

FINGERPAINT CONTENTS

3.2.2 Interface . 24
3.2.3 Portability . 24

4 Requirements traceability matrix 25
4.1 URD to SRD . 25
4.2 SRD to URD . 26

3

Document Status Sheet

Document Status Overview

General

Document title: Software Requirements Document
Identification: SRD-1.0
Author: Tessa Belder, Thom Castermans, Benjamin van der Hoeven,

Roel van Happen, Femke Jansen, Lasse Blaauwbroek
Document status: Approved by the customer

Document History

Version Date Author Reason of change

0.0 21-May-2013 Tessa Belder, Benjamin van der
Hoeven, Roel van Happen,
Femke Jansen, Thom
Castermans

Initial version.

0.1 23-May-2013 Roel van Happen,Thom
Castermans

Revision after feedback from the
technical advisor.

1.0 3-June-2013 - Approved by the customer.

Document Change Records Since Previous Issue

General

Date: 3-June-2013
Document title: Software Requirements Document
Identification: SRD-1.0

Changes

Page Paragraph Reason to change

- - Approved by the customer.

4

Chapter 1

Introduction

This chapter lists general information about this document.

1.1 Purpose

This document provides a translation of all the user requirements listed in section 3 of the
URD [2]. Although the URD describes the wishes of the client, the goal of the SRD is to
represent the developers’ view of what the Fingerpaint application must be able to do.
Note that the software requirements listed in this document are implementation-independent:
that is, the requirements describe what Fingerpaint must do, but not how the requirements
will be realized. The requirements are modelled in a logical model, which provides a simplified
view of the content and behaviour of the application.

1.2 Scope

Fingerpaint is an application designed and developed by Group Fingerpaint for prof. dr. ir.
P.D. Anderson. The application provides a cross-platform tool to visualise fluid mixing. Users
can define the initial concentration distribution, as well as manipulate the mixing protocol.
The resulting fluid distribution can be stored by the user on their device, for later reference.

1.3 List of definitions and abbreviations

1.3.1 Definitions

Client Prof.dr.ir. P.D. Anderson.

Firefox A web browser developed by Mozilla.

Google Chrome A web browser developed by Google.

Internet Explorer A web browser developed by Microsoft.

iOS A mobile operating system developed by Apple.

iOS Safari A web browser developed by Apple designed for devices running iOS.

5

CHAPTER 1. INTRODUCTION FINGERPAINT

iPhone A line of smartphones developed by Apple.

iPad A line of tablet computers developed by Apple.

Opera A web browser developed by Opera Software.

Safari A web browser developed by Apple.

System administrator A person who is employed to maintain and operate a computer
system and/or network. After the SEP project has been completed, this person will be
responsible for maintaining the Fingerpaint application.

1.3.2 Abbreviations

2IP35 The Software Engineering Project
ADD Architectural Design Document
CM Configuration Manager
GUI Graphical User Interface
SEP Software Engineering Project
SR Software Requirements
SRD Software Requirements Document
TU/e Eindhoven University of Technology
URD User Requirements Document

1.4 List of references

[1] ESA, ESA Software Engineering Standards. ESA, March 1995.

[2] Group Fingerpaint, “User requirements document,” SEP, 2013.

[3] prof.dr.ir. P.D. Anderson, “prof.dr.ir. P.D. Anderson’s homepage.” http://www.mate.

tue.nl/mate/showemp.php/19. [Online; accessed 1-May-2013].

[4] Group Fingerpaint, “Architectural design document,” SEP, 2013.

[5] COLEY consulting, “Moscow prioritisation.” http://www.coleyconsulting.co.uk/

moscow.htm. [Online; accessed 24-April-2013].

1.5 Overview

The remainder of this document describe the software requirements in more detail. Chapter
2 gives a general description of:

• relation to current projects (2.1);

• relation to predecessor and successor projects (2.2);

• function and purpose (2.3);

• environment (2.4);

6

http://www.mate.tue.nl/mate/showemp.php/19
http://www.mate.tue.nl/mate/showemp.php/19
http://www.coleyconsulting.co.uk/moscow.htm
http://www.coleyconsulting.co.uk/moscow.htm

FINGERPAINT CHAPTER 1. INTRODUCTION

• relation to other systems (2.5);

• general constraints (2.6);

• model description (2.7).

Chapter 3 gives a detailed description of the functional requirements of the system in 3.1 and
a list of non-functional requirements is given in 3.2. The requirements traceability matrix is
described in chapter 4.

7

Chapter 2

General Description

In this chapter we discuss the relation of this project to the “outside world”: if there are any
related projects running currently and if there were related projects in the past. Then, the
purpose of the Fingerpaint application and the environment in which it operates are dis-
cussed. After that, its relation to other systems is covered. Finally, some general constraints
are described and a description of the logical model is given.

2.1 Relation to current projects

No other current projects are related to Fingerpaint.

2.2 Relation to predecessor and successor projects

Fingerpaint has multiple predecessor projects. These projects resulted in multiple Matlab1

tools that are available on the client’s web page [3]. Fingerpaint will combine some of the
functionality of these tools into a mobile web application. Fingerpaint will be developed
in such a way that the client can easily extend the application with new mixers. When
the development of Fingerpaint is complete, Fingerpaint is no longer responsible for the
application after the final deliverable produced in the SEP project. This means that the client
may change, add or remove the application’s functionality.

2.3 Function and purpose

Fingerpaint is an application that serves as an educational tool for anyone who wants to
gain a deeper understanding of the process of mixing in general, and in particular for students
at the TU/e. By interacting with the application, users can quickly and easily find out what
the effects of a certain mixer and mixing protocol on an initial distribution are. The user can
thus obtain a better understanding about the way this mixer functions. Fingerpaint may
also be used as a quick and convenient way to observe whether a mixing protocol renders
good or bad mixing results.

1http://www.mathworks.nl/products/matlab/

8

http://www.mathworks.nl/products/matlab/

FINGERPAINT CHAPTER 2. GENERAL DESCRIPTION

2.4 Environment

Fingerpaint is a web application that is developed primarily for use on mobile devices.
This means the application will mostly be accessed through web browsers on smartphones
and tablets. It is expected that the application will mostly be used on iPhones and iPads.
Therefore, Fingerpaint must support iOS Safari version 6.0 and above. Furthermore, Fin-
gerpaint should support Firefox version 20 and above, and Google Chrome version 26 and
above. Lastly, if time permits, Fingerpaint could also support Internet Explorer version 10
and above, Opera version 12.1 and above, and Safari version 6.0 and above.

To support the significant share of smartphones and tablets that run on Android, Fin-
gerpaint should run on devices running on Android version 4.0 and higher. Lastly, if time
permits, Fingerpaint could also run on devices running on Windows 8.

The hardware used by the users must be able to run at least one of the supported operating
systems and browsers. Also, the application obviously works better on screens that have a
diagonal of at least about 4 inches and a resolution of at least about 540x960 pixels - the
larger the screen, the easier it is to draw on it (up to a certain maximum, about the size of
a desktop monitor with a diagonal of 20 inches). This is because the user draws with their
finger and since fingers have a certain size, the screen should be large enough to comfortably
draw and see what has been drawn at the same time. On the other hand, when the screen is
too big, it costs too much effort to fill up large parts of the mixer.

The application must support the following screen resolutions:

• “Phone portrait”: 540x960 pixels;

• “Phone landscape”: 960x540 pixels;

• “Tablet portrait”: 800x1280 pixels;

• “Tablet landscape”: 1280x800 pixels;

• “Desktop”: 1600x900 pixels.

2.5 Relation to other systems

The Fingerpaint application is an independent system. However, just like every other web
application, it is dependent in some way on the browser. That is, the correct (according
to the HTML standard2) rendering of the web page is done by the browser. Of course, the
application will be tested in multiple browsers and built in such a way that it displays correctly
in as many browsers as possible.

2.6 General constraints

The user interface should be suitable for mobile devices, so it will be easy to share the
visualised results with other people, and to quickly try out new ideas for mixers wherever the
user may be.

2http://www.whatwg.org/

9

http://www.whatwg.org/

CHAPTER 2. GENERAL DESCRIPTION FINGERPAINT

We assume that the server can compute the displacement of fluids reasonably fast3, so
the mixing run can be executed quickly. When the new concentration distribution has been
computed, this concentration distribution is sent back to the client device along with a metric
to indicate the performance of the mixer. The results are then visualised on the client’s device.

As we do not want to be locked to one specific type of device, we have chosen to design
a cross-platform solution. While this means that desktop PCs should also be able to run the
application, we do not actively support such devices. We will instead concentrate on mobile
devices.

It should be possible to save mixing runs on the client device for later reference. For each
saved run, we store the initial distribution, the mixer and protocol used, the resulting fluid
distribution and the resulting performance metric.

2.7 Model description

On a very high level, the architecture of the Fingerpaint application can be divided into
different tiers communicating through communication channels. A graphical representation
of the relation between tiers and channels can be found in figure 2.1.

2.7.1 Client tier

Of the Client tier, there are an arbitrary number of instances. These instances are the physical
machines of the users of the Fingerpaint application (phones, tablets, laptops, desktops).

Client Browser and Client Persistence

Each Client instance runs a Client Browser (one of the browsers as specified in section 2.4) and
has a persistent storage facility (Client Persistence). The Client Browser can use this facility
to store data that is specific to the user and does not need to be stored in a central location.
The Client Browser provides the user with a Graphical User Interface. All interactions of the
user with the application are performed through this GUI.

2.7.2 Application Server tier

The Application Server is a physical machine maintained by the system administrator of the
application. It is used to distribute the application and provide services to the application.

HTTP Server

The application is distributed on demand to the Client instances using HTTP by the HTTP
server. The HTTP server is a piece of software the responds to requests by either serving a
file from a static collection of content or responding with a dynamically build response. The
former is used to serve the actual application, while the latter is used when the client requests
a simulation, which goes through the HTTP server as well.

3Refer to chapter 6 of the ADD [4] for exact requirements.

10

FINGERPAINT CHAPTER 2. GENERAL DESCRIPTION

Application Service

Whenever centralised data or a simulation is required by the application running on a Client,
this is handled by the Application Service in response to a request from the HTTP server.
This service is responsible for communicating any simulations and their results and also for
serving data from the persistent storage. Data from the persistent storage can be a list of
mixers for example.

2.7.3 Application Persistence tier

The Application Service may use a global persistent storage facility in order to store data
that needs to be available to all Clients. This storage facility is provided in the Application
Persistence tier and is communicated to through the Application Persistence Communication
channel. This tier may be on a different physical machine than the Application Server, but
in practice, it will likely run on the same hardware.

2.7.4 Simulator Server

The simulations that need to be done for the application run on a dedicated machine although
in practice, this will likely be the same physical machine as the Application Server.

Simulator Service and Fortran Module

Whenever a Client wishes to run a simulation, it interfaces with the Simulator Service indi-
rectly through the HTTP server, Application Service and Simulator Service Communication
channel. The Simulator Service uses an existing Fortran Module to calculate the result of a
simulation.

11

CHAPTER 2. GENERAL DESCRIPTION FINGERPAINT

Client

Client Persistence

Client Browser

HTTP Server

Application ServiceSimulator Service

Fortran Module

Application Persistence

HTTP

Simulator Service Communication

Application Persistence Communication

Application Server / Simulator Server

Application Service
Communication

Parts in boxes like this
can be run on separate
hardware, if
required/preferred.

Figure 2.1: The different tiers of the system

12

Chapter 3

Specific requirements

This chapter lists all specific software requirements of the application to be developed, both
functional and non-functional requirements. The requirements are categorised according to
the interface they belong to, as described in section 2.7.

Each requirement has a specific priority, based on the MoSCoW model [5]:

• must have; requirements with this priority are essential for the product, and must be
implemented.

• should have; requirements with this priority are not essential for the product to work.
However, they are nearly as important as the must have’s and are therefore expected
to be implemented.

• could have; requirements with this priority are a nice addition to the product, and may
be implemented, if time and budget allow this.

• won’t have; requirements with this priority will not be implemented in this version of
the product, but may be nice to implement in future versions.

Only those user requirements from the URD [2] with a priority higher than won’t have will
be translated to software requirements in this chapter.

In some of the requirements in this section, the term “fast enough” is mentioned: for a precise
definition, refer to chapter 6 of the ADD [4].

3.1 Functional requirements

This section lists the functional requirements for the Fingerpaint application.

3.1.1 HTTP Server

SRQ1 must have
The HTTP Server must be able to serve static (files that are not dynamically gen-
erated) files to the Client Browser.

13

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

3.1.2 Application Service

SRQ2 must have
The Application Service must be able to retrieve all the available mixers from the
Application Persistence.

SRQ3 must have
The Application Service must be able to send all available mixers to the Client
Browser.

SRQ4 must have
The Application Service must allow for adding new mixers to the Application Per-
sistence.

SRQ5 must have
The Application Service must allow for removing existing mixers from the Applica-
tion Persistence.

SRQ6 must have
The Application Service must be able to provide all available geometries to the
Client Browser.

SRQ7 must have
The Application Service must be able to act as a relay between the Client Browser
and the Simulation Service.

3.1.3 Application Persistence Communication

SRQ8 must have
The Application Persistence Communication must be able to access all the data
from the Application Persistence.

SRQ9 must have
The Application Persistence Communication must be fast enough to serve the data
from the Application Persistence to the Application Service.

3.1.4 Application Persistence

SRQ10 must have
The Application Persistence must deliver all saved mixers to the Application Service.

SRQ11 must have
The Application Persistence must save new mixers handed by the Application Ser-
vice.

SRQ12 must have
The System Administrator is able to add new mixer types for a geometry.

SRQ13 must have
The System Administrator is able to remove mixer types for a geometry.

14

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

3.1.5 Application Service Communication

SRQ14 must have
The Application Service Communication must be able to access all the functionality
from the Application Service.

SRQ15 must have
The Application Service Communication must be fast enough to provide the func-
tionality from the Application Service to the Client Browser.

3.1.6 Client Browser

Change the drawing tool

The user can change the drawing tool that is used to paint on the canvas. The current shape
(circle and square) and size of the drawing tool is displayed on the user interface. The user
interface contains options to change the current shape and size of the drawing tool.

SRQ16 must have
The user interface displays the shape of the tool that is currently selected.

SRQ17 should have
The user interface displays the size of the tool that is currently selected.

SRQ18 must have
A circle-shaped drawing tool can be selected on the graphical user interface.

SRQ19 should have
A square-shaped drawing tool can be selected on the graphical user interface.

SRQ20 should have
A graphical user interface is present to adjust the size of the current tool.

Defining an initial concentration distribution

The user can select a circle or square-shaped drawing tool to draw with. He can draw on the
canvas by swiping with his finger or drawing with the mouse. In addition, the user can reset
the drawn distribution to a completely white concentration distribution.

SRQ21 must have
A graphical interface is present to select the colour (black or white) to paint with
for the initial concentration distribution.

SRQ22 must have
A graphical interface is present to define an initial concentration distribution with
the selected color on the canvas. It must be possible to define this distribution by
means of “painting” on the canvas.

15

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

SRQ23 must have
If the circle-shaped drawing tool in SRQ18 is selected, this tool will be used when
the canvas is “painted”.

SRQ24 should have
If the square-shaped drawing tool in SRQ19 is selected, this tool will be used when
the canvas is “painted”.

SRQ25 must have
A graphical user interface is present to reset the current initial concentration distri-
bution to a completely white state.

Select a geometry, mixer and initial concentration distribution

The user can select a rectangular mixer geometry. Then the user can select a mixer that can
operate on the selected geometry and a initial concentration distribution. There are three
types of initial concentration distributions that the user can choose from. The first type is
a blank concentration distribution, which simply means that the user will be presented with
a clean canvas when this option is selected. The second type is a load option, so the user
can load previously saved concentration distributions that are stored on their device. The
third type of concentration distribution is a predefined distribution, meaning that the user
can choose from a few predefined distributions that are already present in the application.
The selected concentration distribution is then loaded onto the canvas. This translates to the
following software requirements:

SRQ26 must have
The application contains a graphical interface to select an initial mixer, geometry
and options for the initial concentration distribution.

SRQ27 must have
A rectangle geometry can be selected in the user interface.

SRQ28 must have
If a geometry is selected, a user interface is presented to select an appropriate mixer.

SRQ29 should have
A square geometry can be selected in the user interface.

SRQ30 could have
A circle geometry can be selected in the user interface.

SRQ31 could have
A journal bearing geometry can be selected in the user interface.

SRQ32 must have
After a geometry and appropriate mixer is slected in the user interface, a blank
canvas can be selected and loaded.

16

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

SRQ33 should have
After a geometry and appropriate mixer is slected in the user interface, a list of all
previously saved concentration distribution can be retrieved in the user interface.

SRQ34 should have
After the list of concentration distribution from SRQ33 is presented, a previously
saved concentration distribution can be selected and loaded onto the canvas.

SRQ35 could have
After a geometry and appropriate mixer is slected in the user interface, a list of all
predefined concentration distribution can be retrieved in the user interface.

SRQ36 could have
After the list of concentration distribution from SRQ35 is presented, a predefined
concentration distribution can be selected and loaded onto the canvas.

Define mixing protocol for specific geometries

A mixing protocol consists of movements of the geometry (if applicable), and how long these
movements are executed. Different movement types are possible for each geometry. A step
of a mixing protocol has a certain duration (the step size, D). This duration D can be any
multiple of 0.25. If a value is not a multiple of 0.25, it will be rounded to the nearest valid
value. For example, 4.2 is rounded up to 4.25, while 4.1 is rounded down to 4. Each movement
is performed for D time units, which can be set using SRQ37. Depending on the geometry, a
step has additional parameters signifying which part moves and how:

For the rectangular or square geometries, a wall movement is defined by either T or B,
denoting a movement of the top or bottom wall, respectively. These movements can be
combined with a L or R denoting whether the wall is moving left or right. This means there
are four movement modifiers: TL, TR, BL and BR.

The circular geometry only supports one (unnamed) modifier.
For the journal bearing geometry, movements are defined by rotating the outer or inner

circle. The outer circle is denoted with an O and the inner circle is denoted with an I. These
modifiers can be combined with modifiers denoting the direction of the rotation, R and L.
This results in four possible modifiers: OL, OR, IL and IR.

The user interface will contains options to input modifiers where appropriate and to
indicate the step-size associated with those modifiers.

A graphical interface is present to define how many times the current protocol should be run
when the simulation has started.

SRQ37 must have
A graphical user interface is present to associate a valid step-size (as defined above)
to a step.

SRQ38 must have
A graphical user interface is present to indicate how many times the currently defined
protocol should be executed when the simulation starts.

17

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

SRQ39 must have
A graphical user interface is present to associate a valid step-modifier (as defined
above) to a step.

SRQ40 must have
A graphical user interface is present to add and remove steps to the protocol.

SRQ41 must have
If a geometry, a mixer, an initial distribution and a protocol are present, a graphical
user interface must be available to execute the actual mixing simulation.

SRQ42 must have
A grahpical user interface is present to reset the currently defined protocol, thereby
removing all currently defined steps.

Execute mixing runs

The user can choose to execute a single step of a mixing protocol, by defining a single step.
This is done by choosing one wall movement and its duration. This invokes SRQ41, SRQ81,
SRQ83, SRQ82 and SRQ44.

SRQ43 must have
After selecting a geometry, a mixer, an initial distribution and a single step, the user
can execute a mixing run with this single step.

Visualising the results

The concentration distribution resulting from a mixing simulation is visualised in the user
interface, using the canvas that was originally used to draw the initial concentration distri-
bution. The performance results are visualised in a graph.

SRQ44 must have
Concentration distributions can be drawn on the client’s canvas.

SRQ45 must have
Performance results can be plotted in a graph.

3.1.7 ClientPersistence

SRQ46 should have
The client persistence is capable of storing concentration distributions, mixing pro-
tocols and associated mixers and geometries. Results of a mixing run can also be
stored.

18

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

Managing mixing protocols

To manage mixing protocols, the user can save and load the mixing protocols they have
created. It is also possible to load a predefined mixing protocol.

SRQ47 should have
A graphical user interface is present to save the concentration distribution currently
drawn on the canvas to the ClientPersistence.

SRQ48 should have
A graphical user interface is present to save the currently defined mixing protocol
to the ClientPersistence.

SRQ49 should have
A graphical user interface is present to view all saved mixing protocols and remove
a mixing protocol.

SRQ50 should have
A graphical user interface is present to view all saved mixing protocols appropriate
to the currenctly selected geometry. A mixing protocol can be selected from this list
and loaded into the current mixing protocol.

SRQ51 could have
After SRQ27, SRQ29, SRQ30 or SRQ31, the user can load a predefined mixing
protocol. This opens a menu containing all suitable predefined mixing protocols
for the selected geometry. Pressing the name of one such protocol selects it, which
means it will be loaded into the application. After this it can be changed or used
for simulation immediately.

Save and remove mixing runs

SRQ52 must have
After the mixing has been executed, a graphical user interface is present to save the
mixing run. That is, the initial concentration distribution of the run is saved (if not
already saved), the mixing protocol is saved (if not already saved), the performance
result of the mixing simulation is saved and the used geometry and mixer is saved.

SRQ53 must have
A list with previously saved mixing runs can be viewed on the user interface, and a
saved mixing run can be selected and removed.

Save an initial concentration distribution

SRQ54 should have
A graphical user interface is present to save the concentration distribution currently
displayed on the canvas.

19

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

SRQ55 should have
During the SRQ54 action a name for the concentration distribution can be inputted.

SRQ56 should have
After specifying a name in SRQ55, the concentration distribution can be saved to
the ClientPersistence under the inputted name.

SRQ57 should have
If the specified name from SRQ55 is already taken, a graphical user interface is
present to overwrite the previously saved concentration distribution.

SRQ58 should have
The saving process can be cancelled at any time.

Load previously saved concentration distribution

SRQ59 should have
A graphical user interface is present to initiate the loading of a previously saved
concentration distribution.

SRQ60 should have
After the loading process from SRQ59 has been initiated, a list of previously saved
concentration distributions is presented.

SRQ61 should have
In the list from SRQ60, a previously saved distribution can be selected.

SRQ62 should have
A concentration distribution (for example the one selected in SRQ61) can be loaded
into the canvas.

Remove previously saved concentration distributions

SRQ63 should have
A user interface is present initiate the removal of a previously saved concentration
distribution.

SRQ64 should have
After the removal action from SRQ63 has begun, the user interface will present a
list of previously saved concentration distributions.

SRQ65 should have
After the list from SRQ64 is shown on the user interface, one or more previously
saved concentration distributions can be selected for removal.

20

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

SRQ66 should have
If at least one item from SRQ65 is selected, a graphical user interface is presented to
remove those items from storage. A confirmation will be required before the removal
commences.

SRQ67 should have
If no distributions have been saved yet, and SRQ63 has been initiated, a message
will be shown to inform the user that no items can currently be removed.

SRQ68 should have
If no access rights have been provided to the application, a Insufficient access rights
error message is shown when SRQ63 is initiated.

Exporting results

It is possible to save an image of the results of a performed mixing run to the disk of the
Client. This can be a image of the resulting concentration distribution, a animation of several
intermediate concentration distributions (as indicated by the step-repeat from SRQ38) or a
graph displaying the performance of a mixing run (a performance point is generated for each
time the protocol was repeated using SRQ38).

SRQ69 should have
A graphical user interface is present to export an image of the current performance
graph.

SRQ70 could have
A graphical user interface is present to export an animation or still frame of the
current mixing protocol.

SRQ71 should have
The generated image or animation from SRQ69 and SRQ70 are presented to the
ClientBrowser and the ClientBrowser is expected to handle further steps in order to
save the image or animation to the disk.

Loading results

Previously saved results can be loaded into the application.

SRQ72 should have
A graphical user interface should be present to initiate the loading of previously
saved results. The interface shows a list of these saved results.

SRQ73 should have
After the loading action from SRQ72 has been initiated, a saved result can be selected
to load.

21

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

SRQ74 should have
When SRQ73 is executed, the concentration distribution resulting from the saved
mixing simulation is loaded and the performance graph is displayed.

SRQ75 should have
A graphical user interface should be present to load multiple results to create a
performance graph where multiple results are overlayed. The result of this graph
can be saved to the disk.

Language selection

It is possible to change the language of the application. The standard language is English
from SRQ93, and it should be relatively easy to add other languages.

SRQ76 could have
A graphical user interface is present to select one of the available languages for the
application (these languages are SRQ93 and SRQ94).

Requirements regarding the presentation of results

The user is able to get the distribution that resulted from executing his mixing run. In
addition, the mixing performance is given after each mixing step. He is also able to save
and export these results. To this end a results window is available. In the results window,
the final distribution is shown. There is also a show statistics button. When pressed, the
performance of the mixing run is shown in a graph. In this new menu the show statistics

button changes to show result. When this button is pressed, the image switches back to
the default results window. The results window is reached by pressing the start mixing

button in the mixing interface. The mixing interface is the window where the user can define
his mixing protocol. In the mixing interface there is a animate mixing checkbox. If this
checkbox was checked when the start mixing button is pressed, an animation of the mixing
procedure is shown in the results window.

SRQ77 must have
In the results window the result of the user’s mixing protocol is shown. This interface
can be reached by pressing the start mixing button.

SRQ78 must have
The user can use the show performance button to view the performance graph of
the mixing run.

SRQ79 must have
The user can use the show result button to switch back to the standard results
window and view the result distribution of the mixing run.

SRQ80 could have
An animation of the mixing run is shown in the results window if the animate

mixing checkbox was checked.

22

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

3.1.8 Simulator Service Communication

SRQ81 must have
The parameters (initial concentration distribution, geometry, mixing protocol, mixer
and number of protocol applications) can be sent from the Application Service to
the Simulation Service through the Simulator Service Communication channel.

SRQ82 must have
The results of a mixing simulation can be sent from the Simulator Service to the
Application Service through the Simulator Service Communication.

3.1.9 Simulator Service

SRQ83 must have
The server executes the mixing run using the parameters received from the Simula-
tor Service Communication. These parameters are passed as input to the Fortran
implementation.

SRQ84 must have
The server can return the results from a mixing simulation it received from the
fortran module to the Application Service throught the Simulator Service Commu-
nication.

Information exchange

The Simulator Service must be able to send and receive matrix files from the Client Browser
and to the Fortran Module. These matrices specify the characteristics of the mixers.

SRQ85 must have
The Simulator Service must be able to receive protocol information from the Client
Browser throught the Application Service.

SRQ86 must have
The Simulator Service must be able to pass protocol information to the Fortran
Module.

3.1.10 Fortran Module

SRQ87 must have
The Fortran Module must accept input (matrix name, protocol information) from
the Simulator Service.

SRQ88 must have
The Fortran Module must provide output (vectors) to the Simulator Service.

SRQ89 must have
The Fortran Module must have knowledge of all the geometries and mixers used in
the application. This knowledge is not automatically transferred from the applica-
tion to the Fortran module.

23

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

3.2 Non-functional requirements

3.2.1 Performance

SRQ90 must have
Waiting time between submitting input and receiving output is around 5 seconds
on average.

SRQ91 should have
Waiting time between submitting input and receiving output is around 3 seconds
on average.

SRQ92 could have
Waiting time between submitting input and receiving output is around 1 second on
average.

3.2.2 Interface

SRQ93 must have
An English interface is available.

SRQ94 should have
A Dutch interface is available.

3.2.3 Portability

SRQ95 must have
The application runs on iOS Safari version 6.0 and higher.

SRQ96 should have
The application runs on Firefox version 20 and higher.

SRQ97 should have
The application runs on Google Chrome version 26 and higher.

SRQ98 could have
The application runs on Internet Explorer version 10 and higher.

SRQ99 could have
The application runs on Safari version 6.0 and higher.

SRQ100 must have
The application runs on devices running on iOS version 6 and higher.

SRQ101 should have
The application runs on devices running on Android version 4.0 and higher.

SRQ102 could have
The application runs on devices running on Windows 8.

24

Chapter 4

Requirements traceability matrix

4.1 URD to SRD

The following matrix lists which SRQs implement the CPRs from the URD.

CPR SRD CPR SRD CPR SRD

1 26, 27 2 28 3 29
4 30 5 31 6 21, 22, 32
7 16, 18, 23 8 25 9 16, 19, 24

10 17, 20 11 46, 47, 54, 55, 56,
57, 58

12 63, 64, 65, 66, 67,
68

13 33, 34, 59, 60, 61,
62, 67

14 35, 36 15 won’t have

16 won’t have 17 37, 39, 40 18 37, 39, 40, 43
19 42 20 37 21 38
22 48 23 49 24 50
25 37, 39, 40 26 37, 39, 40 27 37, 39, 40
28 51 29 41, 44, 81, 82, 83,

84, 85, 86, 87, 88,
89

30 52

31 53 32 62, 77 33 71
34 78, 79 35 69, 71 36 75
37 71 38 80 39 71
40 93 41 94

The following matrix lists which SRQs implement the CNRs from the URD.

CNR SRD CNR SRD CNR SRD

1 95 2 96 3 97
4 98 5 99 6 won’t have
7 100 8 101 9 102

10 90 11 91 12 92
13 4

25

CHAPTER 4. REQUIREMENTS TRACEABILITY MATRIXFINGERPAINT

4.2 SRD to URD

The following matrix lists all CPRs from the URD implemented by each SRQ.

SRD CPR SRD CPR SRD CPR

1 - 2 - 3 -
4 - 5 - 6 -
7 - 8 - 9 -

10 - 11 - 12 -
13 - 14 - 15 -
16 9 17 10 18 7
19 9 20 10 21 6
22 6 23 7 24 9
25 8 26 1 27 1
28 2 29 3 30 4
31 5 32 6 33 13
34 13 35 14 36 14
37 17, 18, 20, 25, 26,

27
38 21 39 17, 18, 25, 26, 27

40 17, 18, 25, 26, 27 41 29 42 19
43 18 44 29 45 -
46 11 47 11 48 22
49 23 50 24 51 28
52 30 53 31 54 11
55 11 56 11 57 11
58 11 59 13 60 13
61 13 62 13, 32 63 12
64 12 65 12 66 12
67 12, 13 68 12 69 35
70 - 71 33, 35, 37, 39 72 -
73 - 74 - 75 36
76 - 77 32 78 34
79 34 80 38 81 29
82 29 83 29 84 29
85 29 86 29 87 29
88 29 89 29 90 -
91 - 92 - 93 40
94 41 95 - 96 -
97 - 98 - 99 -

100 - 101 - 102 -

26

FINGERPAINTCHAPTER 4. REQUIREMENTS TRACEABILITY MATRIX

The following matrix lists all CNRs from the URD implemented by each SRQ.

SRD CNR SRD CNR SRD CNR

1 - 2 - 3 -
4 13 5 - 6
7 - 8 - 9 -

10 - 11 - 12 -
13 - 14 - 15 -
16 - 17 - 18 -
19 - 20 - 21 -
22 - 23 - 24 -
25 - 26 - 27 -
28 - 29 - 30 -
31 - 32 - 33 -
34 - 35 - 36 -
37 - 38 - 39 -
40 - 41 - 42 -
43 - 44 - 45 -
46 - 47 - 48 -
49 - 50 - 51 -
52 - 53 - 54 -
55 - 56 - 57 -
58 - 59 - 60 -
61 - 62 - 63 -
64 - 65 - 66 -
67 - 68 - 69 -
70 - 71 - 72 -
73 - 74 - 75 -
76 - 77 - 78 -
79 - 80 - 81 -
82 - 83 - 84 -
85 - 86 - 87 -
88 - 89 - 90 10
91 11 92 12 93 -
94 - 95 1 96 2
97 3 98 4 99 5

100 7 101 8 102 9

27

	Introduction
	Purpose
	Scope
	List of definitions and abbreviations
	Definitions
	Abbreviations

	List of references
	Overview

	General Description
	Relation to current projects
	Relation to predecessor and successor projects
	Function and purpose
	Environment
	Relation to other systems
	General constraints
	Model description
	Client tier
	Application Server tier
	Application Persistence tier
	Simulator Server

	Specific requirements
	Functional requirements
	HTTP Server
	Application Service
	Application Persistence Communication
	Application Persistence
	Application Service Communication
	Client Browser
	ClientPersistence
	Simulator Service Communication
	Simulator Service
	Fortran Module

	Non-functional requirements
	Performance
	Interface
	Portability

	Requirements traceability matrix
	URD to SRD
	SRD to URD

