
Project Fingerpaint

SRD-0.1

Software Requirements Document

Authors:
Tessa Belder (0739377)
Lasse Blaauwbroek (0749928)
Thom Castermans (0739808)
Roel van Happen (0751614)
Benjamin van der Hoeven (0758975)
Femke Jansen (0741948)
Hugo Snel (0657700)

Junior Management:
Simon Burg

Areti Paziourou
Luc de Smet

Senior Management:
Mark van den Brand, MF 7.096

Lou Somers, MF 7.145

Technical Advisor:
Ion Barosan, MF 7.082

Customer:
Patrick Anderson, GEM-Z 4.137

Eindhoven - June 23, 2013

Abstract

This document describes the Software Requirements of Fingerpaint. This project is part
of the Software Engineering Project (2IP35) and is one of the assignments at Eindhoven
University of Technology. The Software Requirements Document (SRD) is based on the ESA
standard for software development, as set by the European Space Agency (ESA) [1]. This
document presents a specification of solutions for the requirements described in the URD [2].

Contents

1 Introduction 6

1.1 Purpose . 6

1.2 Scope . 6

1.3 List of definitions and abbreviations . 6

1.3.1 Definitions . 6

1.3.2 Abbreviations . 7

1.4 List of references . 7

1.5 Overview . 7

2 General Description 9

2.1 Relation to current projects . 9

2.2 Relation to predecessor and successor projects 9

2.3 Function and purpose . 9

2.4 Environment . 10

2.5 Relation to other systems . 10

2.6 General constraints . 10

2.7 Model description . 11

2.7.1 Client tier . 11

2.7.2 Application Server tier . 11

2.7.3 Application Persistence tier . 12

2.7.4 Simulator Server . 12

3 Specific requirements 14

3.1 Functional requirements . 14

3.1.1 HTTP . 15

3.1.2 AS . 15

3.1.3 APC . 15

3.1.4 AP . 15

3.1.5 ASC . 16

3.1.6 CB . 16

3.1.7 CP . 20

3.1.8 SSC . 26

3.1.9 SS . 27

3.1.10 FM . 27

3.2 Non-functional requirements . 27

3.2.1 Performance . 27

2

FINGERPAINT CONTENTS

3.2.2 Interface . 28
3.2.3 Operational . 28
3.2.4 Resource . 28
3.2.5 Verification and testing . 28
3.2.6 Portability . 28
3.2.7 Maintainability . 29
3.2.8 Reliability . 29
3.2.9 Security . 29
3.2.10 Safety . 29
3.2.11 Documentation . 29
3.2.12 Extensibility . 29

4 Requirements traceability matrix 30
4.1 URD to SRD . 30
4.2 SRD to URD . 31

3

Document Status Sheet

Document Status Overview

General

Document title: Software Requirements Document
Identification: SRD-0.1
Author: Tessa Belder, Thom Castermans, Benjamin van der Hoeven,

Roel van Happen, Femke Jansen
Document status: Internally approved

Document History

Version Date Author Reason of change

0.0 21-May-2013 Tessa Belder, Benjamin van der
Hoeven, Roel van Happen,
Femke Jansen, Thom
Castermans

Initial version.

0.1 23-May-2013 Roel van Happen,Thom
Castermans

Revision after feedback from the
technical advisor.

Document Change Records Since Previous Issue

General

Date: 21-May-2013
Document title: Software Requirements Document
Identification: SRD-0.1

4

FINGERPAINT CONTENTS

Changes

Page Paragraph Reason to change

10 2.7 updated the figure reference so it correctly refers to figure
2.1.

22 3.1.7 Rephrased SQR80-84 for better clarity.
7 2.5 Rephrasing section 2.5.
8 2.7 Rephrased tier to instance for client machines.
9 2.7.2 Rephrased that the HTTP server is responsible for commu-

nicating simulations rather than executing them.
13-14 3.1.6 Moved and rephrased the first subsubsection (Set options

for a mixing protocol) to the define mixing protocol subsub-
section.

13 3.1.6 Added a new bit of text for drawing at the beginning of the
subsection.

25 3.1.8 Rephrased the first two sentences of the ’Requirements re-
garding the presentation of results’ subsubsection.

5

Chapter 1

Introduction

This chapter lists general information about this document.

1.1 Purpose

This document provides a translation of all the user requirements listed in section 3 of the
URD [2]. Although the URD describes the wishes of the client, the goal of the SRD is to
represent the developers’ view of what the Fingerpaint application must be able to do.
Note that the software requirements listed in this document are implementation-independent:
that is, the requirements describe what Fingerpaint must do, but not how the requirements
will be realized. The requirements are modelled in a logical model, which provides a simplified
view of the content and behaviour of the application.

1.2 Scope

Fingerpaint is an application designed and developed by Group Fingerpaint for prof. dr. ir.
P.D. Anderson. The application provides a cross-platform tool to visualise fluid mixing. Users
can define the initial concentration distribution, as well as manipulate the mixing protocol.
The resulting fluid distribution can be stored by the user on their device, for later reference.

1.3 List of definitions and abbreviations

1.3.1 Definitions

Client Prof.dr.ir. P.D. Anderson.

Firefox A web browser developed by Mozilla.

Google Chrome A web browser developed by Google.

Internet Explorer A web browser developed by Microsoft.

iOS A mobile operating system developed by Apple.

iOS Safari A web browser developed by Apple designed for devices running iOS.

6

FINGERPAINT CHAPTER 1. INTRODUCTION

iPhone A line of smartphones developed by Apple.

iPad A line of tablet computers developed by Apple.

Opera A web browser developed by Opera Software.

Safari A web browser developed by Apple.

System administrator A person who is employed to maintain and operate a computer
system and/or network. After the SEP project has been completed, this person will be
responsible for maintaining the Fingerpaint application.

1.3.2 Abbreviations

2IP35 The Software Engineering Project
ADD Architectural Design Document
CM Configuration Manager
GUI Graphical User Interface
SEP Software Engineering Project
SR Software Requirements
SRD Software Requirements Document
TU/e Eindhoven University of Technology
URD User Requirements Document

1.4 List of references

[1] ESA, ESA Software Engineering Standards. ESA, March 1995.

[2] Group Fingerpaint, “User requirements document,” SEP, 2013.

[3] prof.dr.ir. P.D. Anderson, “prof.dr.ir. P.D. Anderson’s homepage.” http://www.mate.

tue.nl/mate/showemp.php/19. [Online; accessed 1-May-2013].

[4] Group Fingerpaint, “Architectural design document,” SEP, 2013.

[5] COLEY consulting, “Moscow prioritisation.” http://www.coleyconsulting.co.uk/

moscow.htm. [Online; accessed 24-April-2013].

1.5 Overview

The remainder of this document describe the software requirements in more detail. Chapter
2 gives a general description of:

• relation to current projects (2.1);

• relation to predecessor and successor projects (2.2);

• function and purpose (2.3);

• environment (2.4);

7

http://www.mate.tue.nl/mate/showemp.php/19
http://www.mate.tue.nl/mate/showemp.php/19
http://www.coleyconsulting.co.uk/moscow.htm
http://www.coleyconsulting.co.uk/moscow.htm

CHAPTER 1. INTRODUCTION FINGERPAINT

• relation to other systems (2.5);

• general constraints (2.6);

• model description (2.7).

Chapter 3 gives a detailed description of the functional requirements of the system in 3.1 and
a list of non-functional requirements is given in 3.2. The requirements traceability matrix is
described in chapter 4.

8

Chapter 2

General Description

In this chapter we discuss the relation of this project to the “outside world”: if there are any
related projects running currently and if there were related projects in the past. Then, the
purpose of the Fingerpaint application and the environment in which it operates are dis-
cussed. After that, its relation to other systems is covered. Finally, some general constraints
are described and a description of the logical model is given.

2.1 Relation to current projects

No other current projects are related to Fingerpaint.

2.2 Relation to predecessor and successor projects

Fingerpaint has multiple predecessor projects. These projects resulted in multiple Matlab1

tools that are available on the client’s web page [3]. Fingerpaint will combine some of the
functionality of these tools into a mobile web application. Fingerpaint will be developed
in such a way that the client can easily extend the application with new mixers. When
the development of Fingerpaint is complete, Fingerpaint is no longer responsible for the
application after the final deliverable produced in the SEP project. This means that the client
may change, add or remove the application’s functionality.

2.3 Function and purpose

Fingerpaint is an application that serves as an educational tool for anyone who wants to
gain a deeper understanding of the process of mixing in general, and in particular for students
at the TU/e. By interacting with the application, users can quickly and easily find out what
the effects of a certain mixer and mixing protocol on an initial distribution are. The user can
thus obtain a better understanding about the way this mixer functions. Fingerpaint may
also be used as a quick and convenient way to observe whether a mixing protocol renders
good or bad mixing results.

1http://www.mathworks.nl/products/matlab/

9

http://www.mathworks.nl/products/matlab/

CHAPTER 2. GENERAL DESCRIPTION FINGERPAINT

2.4 Environment

Fingerpaint is a web application that is developed primarily for use on mobile devices.
This means the application will mostly be accessed through web browsers on smartphones
and tablets. It is expected that the application will mostly be used on iPhones and iPads.
Therefore, Fingerpaint must support iOS Safari version 6.0 and above. Furthermore, Fin-
gerpaint should support Firefox version 20 and above, and Google Chrome version 26 and
above. Lastly, if time permits, Fingerpaint could also support Internet Explorer version 10
and above, Opera version 12.1 and above, and Safari version 6.0 and above.

To support the significant share of smartphones and tablets that run on Android, Fin-
gerpaint should run on devices running on Android version 4.0 and higher. Lastly, if time
permits, Fingerpaint could also run on devices running on Windows 8.

The hardware used by the users must be able to run at least one of the supported operating
systems and browsers. Also, the application obviously works better on screens that have a
diagonal of at least about 4 inches and a resolution of at least about 540x960 pixels - the
larger the screen, the easier it is to draw on it (up to a certain maximum, about the size of
a desktop monitor with a diagonal of 20 inches). This is because the user draws with their
finger and since fingers have a certain size, the screen should be large enough to comfortably
draw and see what has been drawn at the same time. On the other hand, when the screen is
too big, it costs too much effort to fill up large parts of the mixer.

The application must support the following screen resolutions:

• “Phone portrait”: 540x960 pixels;

• “Phone landscape”: 960x540 pixels;

• “Tablet portrait”: 800x1280 pixels;

• “Tablet landscape”: 1280x800 pixels;

• “Desktop”: 1600x900 pixels.

2.5 Relation to other systems

The Fingerpaint application is an independent system. However, just like every other web
application, it is dependent in some way on the browser. That is, the correct (according
to the HTML standard2) rendering of the web page is done by the browser. Of course, the
application will be tested in multiple browsers and built in such a way that it displays correctly
in as many browsers as possible.

2.6 General constraints

The user interface should be suitable for mobile devices, so it will be easy to share the
visualised results with other people, and to quickly try out new ideas for mixers wherever the
user may be.

2http://www.whatwg.org/

10

http://www.whatwg.org/

FINGERPAINT CHAPTER 2. GENERAL DESCRIPTION

We assume that the server can compute the displacement of fluids reasonably fast3, so
the mixing run can be executed quickly. When the new concentration distribution has been
computed, this concentration distribution is sent back to the client device along with a metric
to indicate the performance of the mixer. The results are then visualised on the client’s device.

As we do not want to be locked to one specific type of device, we have chosen to design
a cross-platform solution. While this means that desktop PCs should also be able to run the
application, we do not actively support such devices. We will instead concentrate on mobile
devices.

It should be possible to save mixing runs on the client device for later reference. For each
saved run, we store the initial distribution, the mixer and protocol used, the resulting fluid
distribution and the resulting performance metric.

2.7 Model description

On a very high level, the architecture of the Fingerpaint application can be divided into
different tiers communicating through communication channels. A graphical representation
of the relation between tiers and channels can be found in figure 2.1.

2.7.1 Client tier

Of the Client tier, there are an arbitrary number of instances. These instances are the physical
machines of the users of the Fingerpaint application (phones, tablets, laptops, desktops).

Client Browser and Client Persistence

Each Client instance runs a Client Browser (one of the browsers as specified in section 2.4) and
has a persistent storage facility (Client Persistence). The Client Browser can use this facility
to store data that is specific to the user and does not need to be stored in a central location.
The Client Browser provides the user with a Graphical User Interface. All interactions of the
user with the application are performed through this GUI.

2.7.2 Application Server tier

The Application Server is a physical machine maintained by the system administrator of the
application. It is used to distribute the application and provide services to the application.

HTTP Server

The application is distributed on demand to the Client instances using HTTP by the HTTP
server. The HTTP server is a piece of software the responds to requests by either serving a
file from a static collection of content or responding with a dynamically build response. The
former is used to serve the actual application, while the latter is used when the client requests
a simulation, which goes through the HTTP server as well.

3Refer to chapter 6 of the ADD [4] for exact requirements.

11

CHAPTER 2. GENERAL DESCRIPTION FINGERPAINT

Application Service

Whenever centralised data or a simulation is required by the application running on a Client,
this is handled by the Application Service in response to a request from the HTTP server.
This service is responsible for communicating any simulations and their results and also for
serving data from the persistent storage. Data from the persistent storage can be a list of
mixers for example.

2.7.3 Application Persistence tier

The Application Service may use a global persistent storage facility in order to store data
that needs to be available to all Clients. This storage facility is provided in the Application
Persistence tier and is communicated to through the Application Persistence Communication
channel. This tier may be on a different physical machine than the Application Server, but
in practice, it will likely run on the same hardware.

2.7.4 Simulator Server

The simulations that need to be done for the application run on a dedicated machine although
in practice, this will likely be the same physical machine as the Application Server.

Simulator Service and Fortran Module

Whenever a Client wishes to run a simulation, it interfaces with the Simulator Service indi-
rectly through the HTTP server, Application Service and Simulator Service Communication
channel. The Simulator Service uses an existing Fortran Module to calculate the result of a
simulation.

12

FINGERPAINT CHAPTER 2. GENERAL DESCRIPTION

Client

Client Persistence

Client Browser

HTTP Server

Application ServiceSimulator Service

Fortran Module

Application Persistence

HTTP

Simulator Service Communication

Application Persistence Communication

Application Server / Simulator Server

Application Service
Communication

Parts in boxes like this
can be run on separate
hardware, if
required/preferred.

Figure 2.1: The different tiers of the system

13

Chapter 3

Specific requirements

This chapter lists all specific software requirements of the application to be developed, both
functional and non-functional requirements. The requirements are categorised according to
the interface they belong to, as described in section 2.7.

Each requirement has a specific priority, based on the MoSCoW model [5]:

• must have; requirements with this priority are essential for the product, and must be
implemented.

• should have; requirements with this priority are not essential for the product to work.
However, they are nearly as important as the must have’s and are therefore expected
to be implemented.

• could have; requirements with this priority are a nice addition to the product, and may
be implemented, if time and budget allow this.

• won’t have; requirements with this priority will not be implemented in this version of
the product, but may be nice to implement in future versions.

Only those user requirements from the URD [2] with a priority higher than won’t have will
be translated to software requirements in this chapter.

In some of the requirements in this section, the term “fast enough” is mentioned: for a precise
definition, refer to chapter 6 of the ADD [4].

Note that as Fingerpaint application is developed using GWT, some of the software re-
quirements listed in this chapter are described in terms of specific GWT widgets or panels1.

3.1 Functional requirements

This section lists the functional requirements for the Fingerpaint application.

1The website for the GWT widgetlist can be found at https://developers.google.com/web-toolkit/

doc/latest/RefWidgetGallery.

14

https://developers.google.com/web-toolkit/doc/latest/RefWidgetGallery
https://developers.google.com/web-toolkit/doc/latest/RefWidgetGallery

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

3.1.1 HTTP Server

SRQ1 must have
The HTTP Server must be able to serve files to the Client Browser.

3.1.2 Application Service

SRQ2 must have
The Application Service must be able to retrieve all the available mixers from the
Application Persistence.

SRQ3 must have
The Application Service must be able to send all the available mixers to the HTTP
server which in turn should send it to the Client Browser.

SRQ4 must have
The Application Service must allow for adding new mixers to the Application Per-
sistence.

SRQ5 must have
The Application Service must allow for removing existing mixers from the Applica-
tion Persistence.

SRQ6 must have
The Application Service must be able to provide all available geometries to the
Client Browser (via the HTTP server).

3.1.3 Application Persistence Communication

SRQ7 must have
The Application Persistence Communication must be able to access all the data
from the Application Persistence.

SRQ8 must have
The Application Persistence Communication must be fast enough to serve the data
from the Application Persistence to the Application Service.

3.1.4 Application Persistence

SRQ9 must have
The Application Persistence must deliver all saved mixers to the Application Service.

SRQ10 must have
The Application Persistence must save new mixers handed by the Application Ser-
vice.

15

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

SRQ11 must have
The Application Persistence must remove existing mixers handed by the Application
Service.

SRQ12 must have
The System Administrator is able to add new mixer types for a geometry.

SRQ13 must have
The System Administrator is able to remove mixer types for a geometry.

3.1.5 Application Service Communication

SRQ14 must have
The Application Service Communication must be able to access all the functionality
from the Application Service.

SRQ15 must have
The Application Service Communication must be fast enough to provide the func-
tionality from the Application Service to the Client Browser.

3.1.6 Client Browser

Defining an initial concentration distribution

The user can select a circle or square-shaped drawing tool to draw with. He can draw on the
canvas by swiping with his finger or drawing the mouse.In addition, the user can reset the
drawn distribution to completely white by using a reset button.

SRQ16 must have
The user can select a colour (black or white) to paint with for the initial concentra-
tion distribution, via a toggle button.

SRQ17 must have
The user can define an initial concentration distribution with the selected colour on
the canvas, by drawing with their finger.

SRQ18 must have
After selecting the circle-shaped drawing tool in SRQ34, the user can draw with this
tool on the canvas.

SRQ19 must have
The user can reset the current concentration distribution to a completely white
concentration distribution, by clicking on the “Reset” button.

SRQ20 should have
After selecting the square-shaped drawing tool in SRQ35, the user can draw this
tool on the canvas.

16

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

Select a geometry, mixer and initial concentration distribution

The user can select a rectangular mixer geometry. To this end, a cell browser is available that
lists all the available geometries in the first column. This first column will contain several
geometries, including rectangle, square, circle or Journal Bearing. After clicking on a
certain geometry, the available mixers for this geometry are displayed in the second column of
the cell browser. The user can now select a mixer of choice and then, the third column in the
cell browser lists all the available starting concentration distributions for the selected mixer.
There are three types of starting concentration distributions that the user can choose from.
The first type is a blank concentration distribution, which simply means that the user will be
presented with a clean canvas when this option is selected. The second type is a load option,
so the user can load previously saved concentration distributions that are stored on their
device. The third type of concentration distribution is a predefined distribution, meaning
that the user can choose from a few predefined distributions that are already present in the
application. In case of the second and third option, there will be a third column in the cell
browser that lists all the available concentration distributions that can be loaded. When the
user clicks on an item in the third column, the required distribution is immediately loaded on
an appropriate canvas. For the first option, a blank canvas is displayed on the screen when
the user clicks on blank.
This translates to the following software requirements:

SRQ21 must have
The mixing interface contains a cell browser with four columns, to select an initial
mixer, geometry and options for the initial concentration distribution.

SRQ22 must have
The user can select rectangle as a geometry, via the first column in the cell browser.

SRQ23 must have
After having selected a geometry, the user can select a mixer that fits the selected
geometry. The mixer can be selected via a second column in the cell browser.

SRQ24 should have
The user can select square as a geometry, via the first column in the cell browser.

SRQ25 could have
The user can select circle as a geometry, via the first column in the cell browser.

SRQ26 could have
The user can select Journal Bearing as a geometry, via the first column in the cell
browser.

SRQ27 must have
The user can select a blank canvas after choosing a geometry and mixer, by choosing
the blank option in the third column in the cell browser.

17

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

SRQ28 should have
The user can view a list of all previously saved concentration distributions, by choos-
ing the load option in the third column in the cell browser.

SRQ29 should have
After selecting the load option from SRQ28, the user can select a previously saved
distribution by clicking on one distribution in the fourth column in the cell browser.

SRQ30 could have
The user can view a list of all predefined concentration distributions, by choosing
the predefined option in the third column in the cell browser.

SRQ31 could have
After selecting the predefined option from SRQ30, the user can select a predefined
initial concentration distribution by clicking on one distribution in the fourth column
in the cell browser.

Change the drawing tool

The user can change the drawing tool that is used to paint on the canvas. The current shape
and size of the drawing tool is displayed on the mixing interface, as a button with an image.
When the user clicks on this button, a pop-up menu appears with one horizontal panel with
two cells. The left cell contains a vertical panel with multiple cells; each cell contains a button
and corresponds to a different shape for the drawing tool (circle or square, for instance). The
right cell contains a slider to adjust the size of the drawing tool. The user can change the
settings for the drawing tool and close the pop-up menu by clicking on the button again.

SRQ32 must have
The mixing interface contains a button that displays the current shape of the drawing
tool.

SRQ33 should have
The button from SRQ32 also displays the current size of the drawing tool.

SRQ34 must have
After clicking the button from SRQ32, the user can select a circle-shaped drawing
tool via a pop-up panel.

SRQ35 should have
After clicking the button from SRQ32, the user can select a square-shaped drawing
tool via a pop-up panel.

SRQ36 should have
The user can adjust the size of the drawing tool, using a slider in the popup panel
from SRQ34 and SRQ35

.

18

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

Define mixing protocol for specific geometries

A mixing protocol consists of movements of the geometry (if applicable), and how long these
movements are executed. Different movement types are possible for each geometry. A step of
a mixing protocol has a certain duration (the step size). This duration D can be any value
that can be created by combining the possible base values for this duration , namely 4, 2,
1, 0.5 and 0.25. Such a value D can be entered in a spinner near the drawing canvas. If an
invalid value is entered – i.e. a value that cannot be created by combining the mentioned
values – this value is rounded up or down to the nearest valid value, whichever is closest.
For example, 4.2 is rounded up to 4.25, while 4.1 is rounded down to 4. Each movement is
performed for D time units, which can be set using SRQ37.

Depending on the geometry, a step has additional parameters signifying which part moves
and how:

For the rectangular or square geometries, a wall movement is defined by either T or B,
denoting a movement of the top or bottom wall, respectively. These walls are visible above
and below the canvas, respectively, and the user can define the wall movement and direction
by swiping over the screen. Looking directly at the screen, a T movement indicates that the
top wall should move to the right, and a B movement indicates that the bottom wall should
move to the left. This way, the walls normally move in a clockwise direction. Each of these
wall movements can be combined with a ‘−’ sign, to indicate that the direction of movement
should be counter-clockwise. This means −T , for example, indicates that the top wall should
move to the left.

The circular geometry does not support movements, but the mixer that is placed inside
the circle does support some form of movement. The user can specify how far he/she wants
to move the mixer inside the geometry, and this serves as the protocol.

For the Journal bearing geometry, movements are defined by rotating the outer or inner
circle. Swiping to the right near the top of the outer circle means the outer circle rotates
clockwise for D time units, and swiping to the right near the top of the inner circle means
the inner circle rotates clockwise for D time units. Here, too, a ‘-’ sign implies the rotation
is executed in the opposite direction.

To indicate how many times the protocol created using the above items is executed, the user
can enter a number in a (different) spinner. We use a spinner because the number it contains
can easily be incremented or decremented by using the arrow keys, and a value that is not
near the original value can easily be entered using its text box.

SRQ37 must have
The user can enter a valid step size in a text box.

SRQ38 must have
The user can indicate via a spinner how many times the protocol should be applied.
This value must be a positive integer.

SRQ39 must have
The Step class contains a movement and a duration for this movement.

19

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

SRQ40 must have
The Protocol class contains a list of Steps.

SRQ41 must have
After defining a mixer, a mixing protocol and an initial distribution, the user can
press the Mix button to execute the actual mixing. This button is greyed out (it
cannot be pressed) if no mixing protocol has been defined.

SRQ42 must have
The user can reset the protocol, which erases all Steps, effectively starting over with
defining the protocol.

Visualising the results

The concentration distribution is visualised on the client’s screen, using the canvas that was
originally used to draw the initial concentration distribution. The performance result is
visualised in a graph, which contains all previous performance results for this particular run.

SRQ43 must have
Concentration distributions can be drawn on the client’s canvas.

SRQ44 must have
Performance results can be plotted in a graph.

Execute mixing runs

The user can choose to execute a single step of a mixing protocol, by defining a single Step.
This is done by choosing one wall movement and its duration. This invokes SRQ41, SRQ99,
SRQ100, SRQ106, SRQ101 and SRQ43.

SRQ45 must have
After selecting a geometry, a mixer, an initial distribution and a single Step, the user
can execute a single step, if the “Define protocol” check box has not been checked.

3.1.7 ClientPersistence

SRQ46 should have
The user can save an initial concentration distribution locally on their device, using
a button and popup panel.

Managing mixing protocols

To manage mixing protocols, the user can save and load the mixing protocols they have
created. It is also possible to load a predefined mixing protocol.

SRQ47 should have
The user can save an initial concentration distribution locally on their device, using
a button and popup panel.

20

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

SRQ48 should have
The user can click the Save button to save the mixing protocol to their device. The
desired name for the protocol can then be specified in the pop-up that appears.

SRQ49 should have
The user can press the Remove button to remove the saved protocol from the device.

SRQ50 should have
After the user has selected the geometry and the mixer using SRQ22, SRQ24, SRQ25
or SRQ26 and SRQ23, they can choose to load a previously saved mixing protocol.
This opens a menu with the names of all applicable saved protocols. Pressing the
name of one such protocol loads it.

SRQ51 could have
After SRQ22, SRQ24, SRQ25 or SRQ26 and SRQ23, the user can load a predefined
mixing protocol. This opens a menu containing all suitable predefined mixing pro-
tocols for the selected geometry. Pressing the name of one such protocol selects it,
which means it will be used once the mixing is executed.

Mixing runs

SRQ52 must have
After the mixing has been executed, the user can save the results on their device
by pressing the Save button. This opens a pop-up using which the user can enter a
name for the results.

SRQ53 must have
In the menu with previously saved mixing runs, the user can press the Remove button
to remove this saved run from storage.

Save an initial concentration distribution

SRQ54 should have
The user can save an initial concentration distribution locally on their device, using
a Save Distribution button.

SRQ55 should have
After clicking the save button from SRQ54, the user can specify a name for the
concentration distribution.

SRQ56 should have
After specifying a name in SRQ55, the user can save the distribution with this name
using the Save button.

SRQ57 should have
When the save from SRQ56 was successful, the user can click the OK button to go
back to the mixing interface.

21

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

SRQ58 should have
If the specified name from SRQ55 is already taken, the user can click the Overwrite

button to overwrite the previous distribution with the same name.

SRQ59 should have
The user can cancel the saving process, by clicking the Cancel button; the user will
now return to the mixing interface.

Load previously saved concentration distribution

SRQ60 should have
The mixing interface has a Load button that allows the user to load previously saved
concentration distributions.

SRQ61 should have
After clicking the Load button from SRQ60, the Load distribution interface ap-
pears.

SRQ62 should have
The Load distribution interface contains a cell browser with two rows.

SRQ63 should have
The first row of the cell browser from SRQ62 contains a Load option, to load previ-
ously saved distributions.

SRQ64 should have
The second row of the cell browser from SRQ63 displays all previously saved con-
centration distributions for the selected option of SRQ63.

SRQ65 should have
The user can load a specific concentration distribution by tapping on it; the mixing
interface is now shown, with the selected distribution displayed on the canvas.

SRQ66 should have
The user can press the OK button in the message from SRQ75 to return to the Load

distribution interface.

SRQ67 could have
The first row of the cell browser from SRQ62 contains a Predefined option, to load
predefined concentration distributions.

SRQ68 could have
The second row of the cell browser from SRQ62 displays all predefined concentration
distributions for the selected option of SRQ67.

22

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

Remove previously saved concentration distributions

SRQ69 should have
The mixing interface has a Remove saved distributions button to remove previ-
ously saved distributions.

SRQ70 should have
After clicking the Remove saved distributions button, the history interface is
shown, with a cell list that provides all the previously saved concentration distribu-
tions.

SRQ71 should have
Each item from in the cell list of SRQ70 contains a check box that can be selected
or deselected, to indicate which distributions should be removed.

SRQ72 should have
After selecting at least one item from SRQ71, the user can press the Remove saved

distributions button and a Are you sure? message is shown.

SRQ73 should have
The user can remove all selected items from SRQ71 by clicking the Yes button in
the dialogue from SRQ72.

SRQ74 should have
The user can cancel the removal process by clicking the No button in the dialogue
from SRQ72.

SRQ75 should have
If no distributions have been saved yet, a No saved distributions message is shown.

SRQ76 should have
The user can press the OK button in the message from SRQ75 to return to the history
interface.

SRQ77 should have
If the user has not given access rights to the application, a Insufficient access rights
error message is shown.

SRQ78 should have
The user can press the OK button in the message from SRQ77 to return to the history
interface.

SRQ79 should have
After pressing the button from requirements SRQ73 or SRQ74, the user returns to
the history interface.

23

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

Saving and exporting results

The results window can be opened by choosing Results from the main interface. This window
contains a save button, an export button and a load results button. If the export button
is pressed, a pop-up with several available export options is shown: export performance,
export picture and export animation. export animation is only available if the animate
mixing checkbox was checked in the mixing interface during the run. The user can then
name the file. If during saving the specified name for saving/exporting is already in use,
the application returns a name already in use message. Additionally, a load performance

button is available in the results window. The user can use this button to open a popup. In
this popup they can select the files they want to load. The button load selected can now be
pressed and now loads all the selected files. If no files are selected, the button named cancel

simply cancels without loading. An alternative way to cancel loading is to click somewhere
not on the pop-up.

SRQ80 should have
The export performance option can be used to open the export menu to export

an image of the current performance graph.

SRQ81 could have
The export animation button can be used to open the export menu to export an
animation of the mixing procedure.

SRQ82 should have
In the export menu, the user can specify a name for the exported file.

SRQ83 should have
If the user clicks on the save button in the export menu, the file is stored at the
location where the browser stores files, with the name specified in SRQ82.

SRQ84 should have
The user should be able to cancel loading files by clicking outside of the loading
popup.

SRQ85 should have
If there are no access rights to store the exported/saved data at the selected location
when SRQ83 is executed, the application returns a no access rights message.

SRQ86 should have
If there is no memory space to store exported/saved data when SRQ83 is executed,
the application returns an out of memory message.

SRQ87 must have
If a file exists with the same name as the one entered in SRQ82, the application
returns a File exists message.

24

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

SRQ88 should have
The popups opened by SRQ87 and SRQ86 can be closed with an ok button.

SRQ89 should have
The user can overwrite the old file in SRQ87 with an overwrite button if a saved
file already exists.

SRQ90 should have
The user can cancel overwriting the old file in SRQ87 with a cancel button if a
saved file already exists.

Loading results

In the results window a load results button is available. This button opens a loading
window in which a results file is opened. Multiple results can be selected.

SRQ91 should have
The load results button can be used to open the load menu for a results file.

SRQ92 should have
In the load menu one or more results files can be selected to be loaded.

SRQ93 should have
In the load menu, the load button can be used to load the files selected in SRQ92.

SRQ94 should have
When SRQ93 is executed, the end mixture and the performance are loaded from
files selected in SRQ92.

SRQ95 should have
If multiple files are selected in the loading menu, they are all depicted in a single
performance graph.

SRQ96 should have
If in SRQ94 multiple files are selected, the user is able to browse through the result
mixtures.

SRQ97 should have
In the load menu, the cancel button can be used to exit the loading menu.

Language selection

In the menu bar a flag of the currently selected language is visible. When clicked, a popup
appears containing several language options, each symbolised by the flag of their country.
These flags can be clicked to change the language to that specific language. Standard language
is English. The preferred language should be stored on the client device.

SRQ98 could have
The user can choose a different language for the application.

25

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

3.1.8 Simulator Service Communication

To execute a mixing protocol, the following SRQs are executed in this order: SRQ41, SRQ99,
SRQ100, SRQ106, SRQ101 and SRQ43.

SRQ99 must have
The parameters (initial concentration distribution, geometry, mixing protocol, mixer
and number of protocol applications) can be sent to the server through the Simulator
Service Communication channel.

SRQ100 must have
The server is able to parse the parameters that it receives and interpret those.

SRQ101 must have
The server can send the resulting distribution and performance statistics to the
Client Browser via the HTTP server.

Requirements regarding the presentation of results

The user is able to get the distribution that resulted from executing his mixing run. In
additon, the mixing performance is given after each mixing step. He is also able to save and
export these results. To this end a results window is available. In the results window, the
final distribution is shown. There is also a show statistics button. When pressed, the
performance of the mixing run is shown in a graph. In this new menu the show statistics

button changes to show result. When this button is pressed, the image switches back to
the default results window. The results window is reached by pressing the start mixing

button in the mixing interface. The mixing interface is the window where the user can define
his mixing protocol. In the mixing interface there is a animate mixing checkbox. If this
checkbox was checked when the start mixing button is pressed, an animation of the mixing
procedure is shown in the results window.

SRQ102 must have
In the results window the result of the user’s mixing protocol is shown. This interface
can be reached by pressing the start mixing button.

SRQ103 must have
The user can use the show performance button to view the performance graph of
the mixing run.

SRQ104 must have
The user can use the show result button to switch back to the standard results
window and view the result distribution of the mixing run.

SRQ105 could have
An animation of the mixing run is shown in the results window if the animate

mixing checkbox was checked.

26

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

3.1.9 Simulator Service

SRQ106 must have
The server executes the mixing run using the parameters received via the HTTP
server. These parameters are passed as input to the Fortran implementation.

Information exchange

The Simulator Service must be able to send and receive matrix files from the Client Browser
and to the Fortran Module. These matrices specify the characteristics of the mixers.

SRQ107 must have
The Simulator Service must be able to receive protocol information from the Client
Browser.

SRQ108 must have
The Simulator Service must be able to pass (references to) matrix files to the Fortran
Module, which the Fotran Module can use for simulations.

SRQ109 must have
The Simulator Service must be able to pass protocol information to the Fortran
Module.

SRQ110 must have
The Simulator Service must, together with the Application Service, make sure that
the listed mixers in the Application Persistence are known to the Fortran Module,
for each geometry.

3.1.10 Fortran Module

SRQ111 must have
The Fortran Module must accept input (matrix, protocol information) from the
Simulator Service.

SRQ112 must have
The Fortran Module must provide output (vectors) to the Simulator Service.

3.2 Non-functional requirements

3.2.1 Performance

SRQ113 must have
Waiting time between submitting input and receiving output is around 5 seconds
on average.

SRQ114 should have
Waiting time between submitting input and receiving output is around 3 seconds
on average.

27

CHAPTER 3. SPECIFIC REQUIREMENTS FINGERPAINT

SRQ115 could have
Waiting time between submitting input and receiving output is around 1 second on
average.

3.2.2 Interface

SRQ116 must have
An English interface is available.

SRQ117 should have
A Dutch interface is available.

3.2.3 Operational

get more requirements

3.2.4 Resource

get more requirements

3.2.5 Verification and testing

get more requirements

3.2.6 Portability

SRQ118 must have
The application runs on iOS Safari version 6.0 and higher.

SRQ119 should have
The application runs on Firefox version 20 and higher.

SRQ120 should have
The application runs on Google Chrome version 26 and higher.

SRQ121 could have
The application runs on Internet Explorer version 10 and higher.

SRQ122 could have
The application runs on Safari version 6.0 and higher.

SRQ123 must have
The application runs on devices running on iOS version 6 and higher.

SRQ124 should have
The application runs on devices running on Android version 4.0 and higher.

SRQ125 could have
The application runs on devices running on Windows 8.

28

FINGERPAINT CHAPTER 3. SPECIFIC REQUIREMENTS

3.2.7 Maintainability

get more requirements

3.2.8 Reliability

get more requirements

3.2.9 Security

get more requirements

3.2.10 Safety

get more requirements

3.2.11 Documentation

get more requirements

3.2.12 Extensibility

get more requirements

29

Chapter 4

Requirements traceability matrix

4.1 URD to SRD

The following matrix lists which SRQs implement the CPRs from the URD.

CPR SRD
1 21, 22 2 23 3 24
4 25 5 26 6 16, 17, 27
7 18, 32, 34 8 19 9 35, 20

10 33, 36 11 46, 47, 57, 58, 59,
54, 55, 56

12 69, 76, 78, 79, 70,
71, 72, 73, 74, 75,
77

13 28, 60, 27, 29, 61,
64 29, 64, 65, 66,
62, 63, 75

14 30, 67, 68 15

16 17 39, 40 18 45
19 42 20 37 21 38
22 48 23 49 24 50
25 40 26 40 27 40
28 51 29 41, 43, 99, 100,

101
30 52, 91, 92, 93, 94,

97
31 53 32 102, 44 33 82, 83, 84, 85, 86,

88, 89, 90
34 103, 104 35 80 36 95, 96
37 80, 82, 83, 84, 85,

86, 88, 89, 90
38 105 39 81, 82, 85, 86, 88,

89, 90
40 116 41 117

The following matrix lists which SRQs implement the CNRs from the URD.

CNR SRD
1 118 2 119 3 120
4 121 5 122 6
7 123 8 124 9 125

10 113 11 114 12 115
13 4

30

FINGERPAINTCHAPTER 4. REQUIREMENTS TRACEABILITY MATRIX

4.2 SRD to URD

The following matrix lists all CPRs from the URD implemented by each SRQ.

SRD CPR
1 2 3
4 5 6
7 8 9

10 11 12
13 14 15
16 17 18
19 20 21
22 23 24
25 26 27
28 29 30
31 32 33
34 35 36
37 38 39
40 41 42
43 44 45
46 47 48
49 50 51
52 53 54
55 56 57
58 59 60
61 62 63
64 65 66
67 68 69
70 71 72
73 74 75
76 77 78
79 80 81
82 83 84
85 86 87
88 89 90
91 92 93
94 95 96
97 98 99

100 101 102
103 104 105
106 107 108
109 110 111
112 113 114

The following matrix lists all CNRs from the URD implemented by each SRQ.

31

CHAPTER 4. REQUIREMENTS TRACEABILITY MATRIXFINGERPAINT

SRD CPR
1 2 3
4 5 6
7 8 9

10 11 12
13 14 15
16 17 18
19 20 21
22 23 24
25 26 27
28 29 30
31 32 33
34 35 36
37 38 39
40 41 42
43 44 45
46 47 48
49 50 51
52 53 54
55 56 57
58 59 60
61 62 63
64 65 66
67 68 69
70 71 72
73 74 75
76 77 78
79 80 81
82 83 84
85 86 87
88 89 90
91 92 93
94 95 96
97 98 99

100 101 102
103 104 105
106 107 108
109 110 111
112 113 114

32

	Introduction
	Purpose
	Scope
	List of definitions and abbreviations
	Definitions
	Abbreviations

	List of references
	Overview

	General Description
	Relation to current projects
	Relation to predecessor and successor projects
	Function and purpose
	Environment
	Relation to other systems
	General constraints
	Model description
	Client tier
	Application Server tier
	Application Persistence tier
	Simulator Server

	Specific requirements
	Functional requirements
	HTTP
	AS
	APC
	AP
	ASC
	CB
	CP
	SSC
	SS
	FM

	Non-functional requirements
	Performance
	Interface
	Operational
	Resource
	Verification and testing
	Portability
	Maintainability
	Reliability
	Security
	Safety
	Documentation
	Extensibility

	Requirements traceability matrix
	URD to SRD
	SRD to URD

